aboutsummaryrefslogtreecommitdiff
path: root/main.cc
blob: 870006eb8fee1e1713538ba340b0cc49c1998cef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#include <GL/glew.h>
#include <GLFW/glfw3.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <vector>
#include <iostream>
#include <random>

GLFWwindow* window;

GLint getUniform(GLuint program, const std::string& name) {
	const GLint uniform = glGetUniformLocation(program, name.c_str());
	if ( uniform == -1 ) {
		std::cerr << "Could not bind uniform " << name << std::endl;
	}
	return uniform;
}

GLint compileShader(const std::string& source, GLenum type) {
	GLint local_shader = glCreateShader(type);

	if ( !local_shader ) {
		std::cerr << "Cannot create a shader of type " << type << std::endl;
		exit(-1);
	}

	const char* source_data = source.c_str();
	const int source_length = source.size();

	glShaderSource(local_shader, 1, &source_data, &source_length);
	glCompileShader(local_shader);

	GLint compiled;
	glGetShaderiv(local_shader, GL_COMPILE_STATUS, &compiled);
	if ( !compiled ) {
		std::cerr << "Cannot compile shader" << std::endl;
		GLint maxLength = 0;
		glGetShaderiv(local_shader, GL_INFO_LOG_LENGTH, &maxLength);
		std::vector<GLchar> errorLog(maxLength);
		glGetShaderInfoLog(local_shader, maxLength, &maxLength, &errorLog[0]);
		for( auto c : errorLog ) {
			std::cerr << c;
		}
		std::cerr << std::endl;
	}

	return local_shader;
}

GLint setupShader() {
	#define GLSL(shader) #shader
	GLint shader = glCreateProgram();

	glAttachShader(shader, compileShader(GLSL(
		uniform mat4 MVP;

		float distance(vec2 v, vec2 w) {
			vec2 u = v - w;
			return sqrt(u.x*u.x + u.y*u.y);
		}

		void main() {
			gl_Position = MVP * vec4(gl_Vertex.xy, 0.0, 1.0);
			gl_FrontColor = vec4(max(1. - gl_Vertex.z/5., 0.1), 0., 0., 0.);
		}),
		GL_VERTEX_SHADER));

	glAttachShader(shader, compileShader(GLSL(
		void main() {
			gl_FragColor = gl_Color;
		}),
		GL_FRAGMENT_SHADER));

	glLinkProgram(shader);
	return shader;
}

GLint setupComputeShader() {
	GLint shader = glCreateProgram();
	glAttachShader(shader, compileShader("#version 430\n" GLSL(
		layout (local_size_x = 1) in;
		layout (std430, binding=1) buffer bufferA{ float data[]; };
		uniform vec2 world;

		float rand(vec2 co){
			return fract(sin(dot(co.xy, vec2(12.9898,78.233))) * 43758.5453);
		}

		bool insideWorld(vec2 v) {
			return v.x > -world.x/2.
			    && v.x <  world.x/2.
				&& v.y > -world.y/2.
				&& v.y <  world.y/2.;
		}

		void main() {
			uint idx = 3*gl_GlobalInvocationID.x;
			vec2 v = vec2(data[idx+0], data[idx+1]);

			if ( data[idx+2] < 5. && insideWorld(v) ) {
				data[idx+0] += 0.01 * cos(v.x*cos(v.y));
				data[idx+1] += 0.01 * sin(v.x-v.y);
				data[idx+2] += 0.01;
			} else {
				data[idx+0] = -(world.x/2.) + rand(vec2(data[idx+1], data[idx+0])) * world.x;
				data[idx+1] = -(world.y/2.) + rand(vec2(data[idx+0], data[idx+1])) * world.y;
				data[idx+2] = uint(rand(v) * 5.);
			}
		}),
		GL_COMPUTE_SHADER));
	glLinkProgram(shader);
	return shader;
}

int window_width  = 800;
int window_height = 600;
double mouse_x, mouse_y;
float world_width, world_height;
glm::mat4 MVP;

void updateMVP() {
	world_width  = 20.f;
	world_height = world_width / window_width * window_height;
	glm::mat4 projection = glm::ortho(
		-(world_width /2), world_width/2,
		-(world_height/2), world_height/2,
		0.1f, 100.0f
	);
	glm::mat4 view = glm::lookAt(
		glm::vec3(0,0,20),
		glm::vec3(0,0,0),
		glm::vec3(0,1,0)
	);
	glm::mat4 model = glm::mat4(1.0f);
	MVP = projection * view * model;
}

void window_size_callback(GLFWwindow*, int width, int height) {
	window_width  = width;
	window_height = height;
	glViewport(0, 0, width, height);
	updateMVP();
}

void cursor_pos_callback(GLFWwindow*, double x, double y) {
	mouse_x = -(world_width/2) + world_width * (x / window_width);
	mouse_y = world_height/2 - world_height * (y / window_height);
}

int main() {
	if( !glfwInit() ) {
		std::cerr <<  "Failed to initialize GLFW" << std::endl;
		return -1;
	}

	glfwWindowHint(GLFW_SAMPLES, 4);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

	window = glfwCreateWindow(window_width, window_height, "shader", NULL, NULL);
	if( window == NULL ){
		std::cerr << "Failed to open GLFW window." << std::endl;
		glfwTerminate();
		return -1;
	}
	glfwSetWindowSizeCallback(window, window_size_callback);
	glfwSetCursorPosCallback(window, cursor_pos_callback);
	glfwMakeContextCurrent(window);

	glewExperimental = true;
	if ( glewInit() != GLEW_OK ) {
		std::cerr << "Failed to initialize GLEW" << std::endl;
		glfwTerminate();
		return -1;
	}

	glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);

	glClearColor(0.0f, 0.0f, 0.4f, 0.0f);

	GLuint VertexArrayID;
	glGenVertexArrays(1, &VertexArrayID);
	glBindVertexArray(VertexArrayID);

	GLint ProgramID = setupShader();
	GLuint MatrixID = glGetUniformLocation(ProgramID, "MVP");
	GLuint MouseID  = glGetUniformLocation(ProgramID, "mouse");

	GLint ComputeProgramID = setupComputeShader();
	GLuint WorldID = glGetUniformLocation(ComputeProgramID, "world");

	updateMVP();

	const std::size_t particle_count = 100000; 

	std::vector<GLfloat> vertex_buffer_data;
	vertex_buffer_data.reserve(3*particle_count);

	std::random_device rd;
	std::mt19937 gen(rd());
	std::uniform_real_distribution<GLfloat> distX(-world_width/2.f, world_width/2.f);
	std::uniform_real_distribution<GLfloat> distY(-world_height/2.f, world_height/2.f);
	std::uniform_real_distribution<GLfloat> distAge(0.f, 5.f);

	for ( int i = 0; i < particle_count; ++i ) {
		vertex_buffer_data.emplace_back(distX(gen));
		vertex_buffer_data.emplace_back(distY(gen));
		vertex_buffer_data.emplace_back(distAge(gen));
	}

	GLuint vertexbuffer;
	glGenBuffers(1, &vertexbuffer);
	glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
	glBufferData(GL_ARRAY_BUFFER,
		vertex_buffer_data.size() * sizeof(GLfloat), &vertex_buffer_data[0], GL_STATIC_DRAW);

	do {
		glUseProgram(ComputeProgramID);
		glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, vertexbuffer);
		glUniform2f(WorldID, world_width, world_height);
		glDispa