diff options
Initial extraction of common cylinder2d model setup functions
I am not quite happy with how this looks right now but at least both
validation examples are for the most part condensed to only differ in
their refinement setup.
Perhaps a SchaeferTurek-specific "Solver" would further improve
reproducibility?
-rw-r--r-- | apps/adrian/cylinder2d/common/model.h | 222 | ||||
-rw-r--r-- | apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp | 231 | ||||
-rw-r--r-- | apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp | 259 |
3 files changed, 275 insertions, 437 deletions
diff --git a/apps/adrian/cylinder2d/common/model.h b/apps/adrian/cylinder2d/common/model.h new file mode 100644 index 0000000..89b276b --- /dev/null +++ b/apps/adrian/cylinder2d/common/model.h @@ -0,0 +1,222 @@ +/* + * Lattice Boltzmann grid refinement sample, written in C++, + * using the OpenLB library + * + * Copyright (C) 2019 Adrian Kummerländer + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * <http://www.openlb.net/> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + */ + +namespace SchaeferTurek { + +const T deltaR = cylinderD / N; // coarse lattice spacing + +const Vector<T,2> modelOrigin {0.0, 0.0}; +const Vector<T,2> modelExtend {22*cylinderD + deltaR, 4.1*cylinderD + deltaR}; + +const Vector<T,2> cylinderCenter {2*cylinderD, 2*cylinderD + deltaR/2}; + +void prepareGeometry(Grid2D<T,DESCRIPTOR>& grid, Vector<T,2> origin, Vector<T,2> extend) +{ + OstreamManager clout(std::cout,"prepareGeometry"); + clout << "Prepare Geometry ..." << std::endl; + + auto& converter = grid.getConverter(); + auto& sGeometry = grid.getSuperGeometry(); + + sGeometry.rename(0,1); + + const T physSpacing = converter.getPhysDeltaX(); + + // Set material number for channel walls + { + const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; + const Vector<T,2> wallOrigin = origin - physSpacing/4; + + IndicatorCuboid2D<T> lowerWall(wallExtend, wallOrigin); + sGeometry.rename(1,2,lowerWall); + } + { + const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; + const Vector<T,2> wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 }; + + IndicatorCuboid2D<T> upperWall(wallExtend, wallOrigin); + sGeometry.rename(1,2,upperWall); + } + + // Set material number for inflow and outflow + { + const Vector<T,2> inflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; + const Vector<T,2> inflowOrigin = origin - physSpacing/4; + + IndicatorCuboid2D<T> inflow(inflowExtend, inflowOrigin); + sGeometry.rename(1,3,inflow); + } + { + const Vector<T,2> outflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; + const Vector<T,2> outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 }; + + IndicatorCuboid2D<T> outflow(outflowExtend, outflowOrigin); + sGeometry.rename(1,4,outflow); + } + + // Set material number for vertically centered cylinder + { + const Vector<T,2> cylinderOrigin = origin + Vector<T,2> {cylinderCenter[0], cylinderCenter[1]}; + IndicatorCircle2D<T> obstacle(cylinderOrigin, cylinderD/2); + sGeometry.rename(1,5,obstacle); + } + + sGeometry.clean(); + sGeometry.innerClean(); + sGeometry.checkForErrors(); + + clout << "Prepare Geometry ... OK" << std::endl; +} + +void prepareLattice(Grid2D<T,DESCRIPTOR>& grid) +{ + OstreamManager clout(std::cout,"prepareLattice"); + clout << "Prepare lattice ..." << std::endl; + + auto& converter = grid.getConverter(); + auto& sGeometry = grid.getSuperGeometry(); + auto& sLattice = grid.getSuperLattice(); + + Dynamics<T,DESCRIPTOR>& bulkDynamics = grid.addDynamics( + std::unique_ptr<Dynamics<T,DESCRIPTOR>>( + new BGKdynamics<T,DESCRIPTOR>( + grid.getConverter().getLatticeRelaxationFrequency(), + instances::getBulkMomenta<T,DESCRIPTOR>()))); + + sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); + createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition); + + const T omega = converter.getLatticeRelaxationFrequency(); + + sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>()); + sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk + sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls + sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow + sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow + sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack<T,DESCRIPTOR>()); // cylinder + + sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); + sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); + sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); + + AnalyticalConst2D<T,T> rho0(1.0); + AnalyticalConst2D<T,T> u0(0.0, 0.0); + + auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4}); + sLattice.defineRhoU(materials, rho0, u0); + sLattice.iniEquilibrium(materials, rho0, u0); + + sLattice.initialize(); + + clout << "Prepare lattice ... OK" << std::endl; + sGeometry.print(); +} + +void setBoundaryValues(Grid2D<T,DESCRIPTOR>& grid, int iT) +{ + auto& converter = grid.getConverter(); + auto& sGeometry = grid.getSuperGeometry(); + auto& sLattice = grid.getSuperLattice(); + + const int iTmaxStart = converter.getLatticeTime(0.4*16); + const int iTupdate = 5; + + if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { + PolynomialStartScale<T,T> StartScale(iTmaxStart, 1); + + T iTvec[1] { T(iT) }; + T frac[1] { }; + StartScale(frac, iTvec); + + const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0]; + Poiseuille2D<T> u(sGeometry, 3, maxVelocity, converter.getPhysDeltaX()/2); + + sLattice.defineU(sGeometry, 3, u); + } +} + +void getResults(Grid2D<T,DESCRIPTOR>& grid, + const std::string& prefix, + int iT) +{ + auto& converter = grid.getConverter(); + auto& sLattice = grid.getSuperLattice(); + auto& sGeometry = grid.getSuperGeometry(); + + SuperVTMwriter2D<T> vtmWriter(prefix); + SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity(sLattice, converter); + SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); + SuperLatticeGeometry2D<T,DESCRIPTOR> geometry(sLattice, sGeometry); + SuperLatticeKnudsen2D<T,DESCRIPTOR> knudsen(sLattice); + vtmWriter.addFunctor(geometry); + vtmWriter.addFunctor(velocity); + vtmWriter.addFunctor(pressure); + vtmWriter.addFunctor(knudsen); + + if (iT==0) { + vtmWriter.createMasterFile(); + } + + vtmWriter.write(iT); +} + +void takeMeasurements(Grid2D<T,DESCRIPTOR>& grid, int iT, bool print=true) +{ + auto& sLattice = grid.getSuperLattice(); + auto& sGeometry = grid.getSuperGeometry(); + auto& converter = grid.getConverter(); + + SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); + AnalyticalFfromSuperF2D<T> intpolatePressure(pressure, true); + SuperLatticePhysDrag2D<T,DESCRIPTOR> dragF(sLattice, sGeometry, 5, converter); + + const T radiusCylinder = cylinderD/2; + + const T point1[2] { cylinderCenter[0] - radiusCylinder, cylinderCenter[1] }; + const T point2[2] { cylinderCenter[0] + radiusCylinder, cylinderCenter[1] }; + + T pressureInFrontOfCylinder, pressureBehindCylinder; + intpolatePressure(&pressureInFrontOfCylinder, point1); + intpolatePressure(&pressureBehindCylinder, point2); + const T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder; + + const int input[3] {}; + T drag[dragF.getTargetDim()] {}; + dragF(drag, input); + + static Gnuplot<T> gplot("results"); + gplot.setData(converter.getPhysTime(iT), {drag[0], drag[1], pressureDrop}, {"drag", "lift", "deltaP"}, "bottom right", {'l','l'}); + gplot.writePNG(); + + if (print) { + OstreamManager clout(std::cout, "measurement"); + clout << "pressureDrop=" << pressureDrop + << "; drag=" << drag[0] + << "; lift=" << drag[1] + << endl; + } +} + +} diff --git a/apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp b/apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp index b4c3689..16fb95c 100644 --- a/apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp +++ b/apps/adrian/cylinder2d/optimized_grid/cylinder2d.cpp @@ -28,8 +28,6 @@ #include "olb2D.hh" #endif -#include <vector> - using namespace olb; typedef double T; @@ -39,210 +37,22 @@ typedef double T; /// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96] const T cylinderD = 0.1; const int N = 5; // resolution of the cylinder -const T deltaR = cylinderD / N; // coarse lattice spacing -const T lx = 22*cylinderD + deltaR; // length of the channel -const T ly = 4.1*cylinderD + deltaR; // height of the channel -const T cylinderX = 2*cylinderD; -const T cylinderY = 2*cylinderD + deltaR/2; const T Re = 100.; // Reynolds number const T tau = 0.51; // relaxation time const T maxPhysT = 16.; // max. simulation time in s, SI unit const Characteristics<T> PhysCharacteristics( - 0.1, // char. phys. length + cylinderD, // char. phys. length 1.0, // char. phys. velocity 0.1/Re, // phsy. kinematic viscosity 1.0); // char. phys. density -void prepareGeometry(Grid2D<T,DESCRIPTOR>& grid, Vector<T,2> origin, Vector<T,2> extend) -{ - OstreamManager clout(std::cout,"prepareGeometry"); - clout << "Prepare Geometry ..." << std::endl; - - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - - sGeometry.rename(0,1); +#include "../common/model.h" - const T physSpacing = converter.getPhysDeltaX(); - - // Set material number for channel walls - { - const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; - const Vector<T,2> wallOrigin = origin - physSpacing/4; - - IndicatorCuboid2D<T> lowerWall(wallExtend, wallOrigin); - sGeometry.rename(1,2,lowerWall); - } - { - const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; - const Vector<T,2> wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 }; - - IndicatorCuboid2D<T> upperWall(wallExtend, wallOrigin); - sGeometry.rename(1,2,upperWall); - } - - // Set material number for inflow and outflow - { - const Vector<T,2> inflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; - const Vector<T,2> inflowOrigin = origin - physSpacing/4; - - IndicatorCuboid2D<T> inflow(inflowExtend, inflowOrigin); - sGeometry.rename(1,3,inflow); - } - { - const Vector<T,2> outflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; - const Vector<T,2> outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 }; - - IndicatorCuboid2D<T> outflow(outflowExtend, outflowOrigin); - sGeometry.rename(1,4,outflow); - } - - // Set material number for vertically centered cylinder - { - const Vector<T,2> cylinderOrigin = origin + Vector<T,2> {cylinderX, cylinderY}; - IndicatorCircle2D<T> obstacle(cylinderOrigin, cylinderD/2); - sGeometry.rename(1,5,obstacle); - } - - sGeometry.clean(); - sGeometry.innerClean(); - sGeometry.checkForErrors(); - - clout << "Prepare Geometry ... OK" << std::endl; -} - -void prepareLattice(Grid2D<T,DESCRIPTOR>& grid) -{ - OstreamManager clout(std::cout,"prepareLattice"); - clout << "Prepare lattice ..." << std::endl; - - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - auto& sLattice = grid.getSuperLattice(); - - Dynamics<T,DESCRIPTOR>& bulkDynamics = grid.addDynamics( - std::unique_ptr<Dynamics<T,DESCRIPTOR>>( - new BGKdynamics<T,DESCRIPTOR>( - grid.getConverter().getLatticeRelaxationFrequency(), - instances::getBulkMomenta<T,DESCRIPTOR>()))); - - sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); - createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition); - - const T omega = converter.getLatticeRelaxationFrequency(); - - sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>()); - sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk - sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls - sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow - sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow - sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack<T,DESCRIPTOR>()); // cylinder - - sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); - sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); - sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); - - AnalyticalConst2D<T,T> rho0(1.0); - AnalyticalConst2D<T,T> u0(0.0, 0.0); - - auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4}); - sLattice.defineRhoU(materials, rho0, u0); - sLattice.iniEquilibrium(materials, rho0, u0); - - sLattice.initialize(); - - clout << "Prepare lattice ... OK" << std::endl; - sGeometry.print(); -} - -void setBoundaryValues(Grid2D<T,DESCRIPTOR>& grid, int iT) -{ - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - auto& sLattice = grid.getSuperLattice(); - - const int iTmaxStart = converter.getLatticeTime(0.4*16); - const int iTupdate = 5; - - if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { - PolynomialStartScale<T,T> StartScale(iTmaxStart, 1); - - T iTvec[1] { T(iT) }; - T frac[1] { }; - StartScale(frac, iTvec); - - const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0]; - Poiseuille2D<T> u(sGeometry, 3, maxVelocity, deltaR/2); - - sLattice.defineU(sGeometry, 3, u); - } -} - -void getResults(Grid2D<T,DESCRIPTOR>& grid, - const std::string& prefix, - int iT) -{ - auto& converter = grid.getConverter(); - auto& sLattice = grid.getSuperLattice(); - auto& sGeometry = grid.getSuperGeometry(); - - SuperVTMwriter2D<T> vtmWriter(prefix); - SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity(sLattice, converter); - SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); - SuperLatticeGeometry2D<T,DESCRIPTOR> geometry(sLattice, sGeometry); - SuperLatticeKnudsen2D<T,DESCRIPTOR> knudsen(sLattice); - vtmWriter.addFunctor(geometry); - vtmWriter.addFunctor(velocity); - vtmWriter.addFunctor(pressure); - vtmWriter.addFunctor(knudsen); - - if (iT==0) { - vtmWriter.createMasterFile(); - } - - vtmWriter.write(iT); -} - -void takeMeasurements(Grid2D<T,DESCRIPTOR>& grid, int iT, bool print=true) -{ - auto& sLattice = grid.getSuperLattice(); - auto& sGeometry = grid.getSuperGeometry(); - auto& converter = grid.getConverter(); - - SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); - AnalyticalFfromSuperF2D<T> intpolatePressure(pressure, true); - SuperLatticePhysDrag2D<T,DESCRIPTOR> dragF(sLattice, sGeometry, 5, converter); - - const T radiusCylinder = cylinderD/2; - - const T point1[2] { cylinderX - radiusCylinder, cylinderY }; - const T point2[2] { cylinderX + radiusCylinder, cylinderY }; - - T pressureInFrontOfCylinder, pressureBehindCylinder; - intpolatePressure(&pressureInFrontOfCylinder, point1); - intpolatePressure(&pressureBehindCylinder, point2); - const T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder; - - const int input[3] {}; - T drag[dragF.getTargetDim()] {}; - dragF(drag, input); - - static Gnuplot<T> gplot("results"); - gplot.setData(converter.getPhysTime(iT), {drag[0], drag[1], pressureDrop}, {"drag", "lift", "deltaP"}, "bottom right", {'l','l'}); - gplot.writePNG(); - - if (print) { - OstreamManager clout(std::cout, "measurement"); - clout << "pressureDrop=" << pressureDrop - << "; drag=" << drag[0] - << "; lift=" << drag[1] - << endl; - } -} - -void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid, Vector<T,2> domainOrigin, Vector<T,2> domainExtend) +void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid, + Vector<T,2> domainOrigin, Vector<T,2> domainExtend, + Vector<T,2> cylinderCenter) { const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); @@ -250,7 +60,7 @@ void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid, Vector<T,2> domainOrigin, const Vector<T,2> fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0}; auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false); - prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); { const Vector<T,2> origin = fineOutflowGrid.getOrigin(); @@ -269,7 +79,7 @@ void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid, Vector<T,2> domainOrigin, const Vector<T,2> fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0}; auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false); - prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); { const Vector<T,2> origin = fineOutflowGrid2.getOrigin(); @@ -288,19 +98,19 @@ void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid, Vector<T,2> domainOrigin, const Vector<T,2> fineOrigin {0.5*cylinderD, coarseDeltaX}; auto& fineGrid = coarseGrid.refine(fineOrigin, fineExtend); - prepareGeometry(fineGrid, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineGrid, domainOrigin, domainExtend); const Vector<T,2> fineExtend2 {5*cylinderD, fineGrid.getExtend()[1]-2*coarseDeltaX}; const Vector<T,2> fineOrigin2 {1*cylinderD, (domainExtend[1]-fineExtend2[1])/2}; auto& fineGrid2 = fineGrid.refine(fineOrigin2, fineExtend2); - prepareGeometry(fineGrid2, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineGrid2, domainOrigin, domainExtend); const Vector<T,2> fineExtend3 {1.25*cylinderD, 1.25*cylinderD}; - const Vector<T,2> fineOrigin3 {cylinderX-fineExtend3[0]/2, cylinderY-fineExtend3[1]/2}; + const Vector<T,2> fineOrigin3 {cylinderCenter[0]-fineExtend3[0]/2, cylinderCenter[1]-fineExtend3[1]/2}; auto& fineGrid3 = fineGrid2.refine(fineOrigin3, fineExtend3); - prepareGeometry(fineGrid3, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineGrid3, domainOrigin, domainExtend); } int main(int argc, char* argv[]) @@ -309,9 +119,7 @@ int main(int argc, char* argv[]) singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); - const Vector<T,2> coarseOrigin {0.0, 0.0}; - const Vector<T,2> coarseExtend {lx, ly}; - IndicatorCuboid2D<T> coarseCuboid(coarseExtend, coarseOrigin); + IndicatorCuboid2D<T> coarseCuboid(SchaeferTurek::modelExtend, SchaeferTurek::modelOrigin); Grid2D<T,DESCRIPTOR> coarseGrid( coarseCuboid, @@ -321,10 +129,11 @@ int main(int argc, char* argv[]) const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); - prepareGeometry(coarseGrid, domainOrigin, domainExtend); - setupRefinement(coarseGrid, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(coarseGrid, domainOrigin, domainExtend); + + setupRefinement(coarseGrid, domainOrigin, domainExtend, SchaeferTurek::cylinderCenter); - coarseGrid.forEachGrid(prepareLattice); + coarseGrid.forEachGrid(SchaeferTurek::prepareLattice); clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl; clout << "Starting simulation..." << endl; @@ -335,10 +144,10 @@ int main(int argc, char* argv[]) coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); timer.start(); - Grid2D<T,DESCRIPTOR>& cylinderGrid = coarseGrid.locate({cylinderX, cylinderY}); + Grid2D<T,DESCRIPTOR>& cylinderGrid = coarseGrid.locate(SchaeferTurek::cylinderCenter); for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { - setBoundaryValues(coarseGrid, iT); + SchaeferTurek::setBoundaryValues(coarseGrid, iT); coarseGrid.collideAndStream(); @@ -347,10 +156,10 @@ int main(int argc, char* argv[]) timer.printStep(); coarseGrid.forEachGrid("cylinder2d", [&](Grid2D<T,DESCRIPTOR>& grid, const std::string& id) { - getResults(grid, id, iT); + SchaeferTurek::getResults(grid, id, iT); }); - takeMeasurements(cylinderGrid, iT); + SchaeferTurek::takeMeasurements(cylinderGrid, iT); } } diff --git a/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp index f1e6fa9..5a6725b 100644 --- a/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp +++ b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp @@ -28,8 +28,6 @@ #include "olb2D.hh" #endif -#include <vector> - using namespace olb; typedef double T; @@ -39,243 +37,29 @@ typedef double T; /// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96] const T cylinderD = 0.1; const int N = 5; // resolution of the cylinder -const T deltaR = cylinderD / N; // coarse lattice spacing -const T lx = 22*cylinderD + deltaR; // length of the channel -const T ly = 4.1*cylinderD + deltaR; // height of the channel -const T cylinderX = 2*cylinderD; -const T cylinderY = 2*cylinderD + deltaR/2; const T Re = 100.; // Reynolds number const T tau = 0.51; // relaxation time const T maxPhysT = 16.; // max. simulation time in s, SI unit const Characteristics<T> PhysCharacteristics( - 0.1, // char. phys. length + cylinderD, // char. phys. length 1.0, // char. phys. velocity 0.1/Re, // phsy. kinematic viscosity 1.0); // char. phys. density -void prepareGeometry(Grid2D<T,DESCRIPTOR>& grid, Vector<T,2> origin, Vector<T,2> extend) -{ - OstreamManager clout(std::cout,"prepareGeometry"); - clout << "Prepare Geometry ..." << std::endl; - - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - - sGeometry.rename(0,1); - - const T physSpacing = converter.getPhysDeltaX(); - - // Set material number for channel walls - { - const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; - const Vector<T,2> wallOrigin = origin - physSpacing/4; - - IndicatorCuboid2D<T> lowerWall(wallExtend, wallOrigin); - sGeometry.rename(1,2,lowerWall); - } - { - const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; - const Vector<T,2> wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 }; - - IndicatorCuboid2D<T> upperWall(wallExtend, wallOrigin); - sGeometry.rename(1,2,upperWall); - } - - // Set material number for inflow and outflow - { - const Vector<T,2> inflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; - const Vector<T,2> inflowOrigin = origin - physSpacing/4; - - IndicatorCuboid2D<T> inflow(inflowExtend, inflowOrigin); - sGeometry.rename(1,3,inflow); - } - { - const Vector<T,2> outflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; - const Vector<T,2> outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 }; - - IndicatorCuboid2D<T> outflow(outflowExtend, outflowOrigin); - sGeometry.rename(1,4,outflow); - } - - // Set material number for vertically centered cylinder - { - const Vector<T,2> cylinderOrigin = origin + Vector<T,2> {cylinderX, cylinderY}; - IndicatorCircle2D<T> obstacle(cylinderOrigin, cylinderD/2); - sGeometry.rename(1,5,obstacle); - } - - sGeometry.clean(); - sGeometry.innerClean(); - sGeometry.checkForErrors(); - - clout << "Prepare Geometry ... OK" << std::endl; -} - -void disableRefinedArea(Grid2D<T,DESCRIPTOR>& coarseGrid, - RefiningGrid2D<T,DESCRIPTOR>& fineGrid) -{ - auto& sGeometry = coarseGrid.getSuperGeometry(); - auto refinedOverlap = fineGrid.getRefinedOverlap(); - sGeometry.reset(*refinedOverlap); -} - -void prepareLattice(Grid2D<T,DESCRIPTOR>& grid) -{ - OstreamManager clout(std::cout,"prepareLattice"); - clout << "Prepare lattice ..." << std::endl; - - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - auto& sLattice = grid.getSuperLattice(); - - Dynamics<T,DESCRIPTOR>& bulkDynamics = grid.addDynamics( - std::unique_ptr<Dynamics<T,DESCRIPTOR>>( - new BGKdynamics<T,DESCRIPTOR>( - grid.getConverter().getLatticeRelaxationFrequency(), - instances::getBulkMomenta<T,DESCRIPTOR>()))); - - sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); - //createInterpBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition); - createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition); - - const T omega = converter.getLatticeRelaxationFrequency(); - - sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>()); - sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk - sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls - sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow - sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow - sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack<T,DESCRIPTOR>()); // cylinder - - sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); - sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); - sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); - - AnalyticalConst2D<T,T> rho0(1.0); - AnalyticalConst2D<T,T> u0(0.0, 0.0); - - auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4}); - sLattice.defineRhoU(materials, rho0, u0); - sLattice.iniEquilibrium(materials, rho0, u0); - - sLattice.initialize(); - - clout << "Prepare lattice ... OK" << std::endl; - sGeometry.print(); -} - -void setBoundaryValues(Grid2D<T,DESCRIPTOR>& grid, int iT) -{ - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - auto& sLattice = grid.getSuperLattice(); - - const int iTmaxStart = converter.getLatticeTime(0.4*16); - const int iTupdate = 5; - - if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { - PolynomialStartScale<T,T> StartScale(iTmaxStart, 1); - - T iTvec[1] { T(iT) }; - T frac[1] { }; - StartScale(frac, iTvec); - - const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0]; - Poiseuille2D<T> u(sGeometry, 3, maxVelocity, deltaR/2); - - sLattice.defineU(sGeometry, 3, u); - } -} - -void getResults(Grid2D<T,DESCRIPTOR>& grid, - const std::string& prefix, - int iT) -{ - auto& converter = grid.getConverter(); - auto& sLattice = grid.getSuperLattice(); - auto& sGeometry = grid.getSuperGeometry(); - - SuperVTMwriter2D<T> vtmWriter(prefix); - SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity(sLattice, converter); - SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); - SuperLatticeGeometry2D<T,DESCRIPTOR> geometry(sLattice, sGeometry); - SuperLatticeKnudsen2D<T,DESCRIPTOR> knudsen(sLattice); - vtmWriter.addFunctor(geometry); - vtmWriter.addFunctor(velocity); - vtmWriter.addFunctor(pressure); - vtmWriter.addFunctor(knudsen); - - if (iT==0) { - vtmWriter.createMasterFile(); - } +#include "../common/model.h" - vtmWriter.write(iT); -} - -void takeMeasurements(Grid2D<T,DESCRIPTOR>& grid) +void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid, + Vector<T,2> domainOrigin, Vector<T,2> domainExtend) { - static T maxDrag = 0.0; - - OstreamManager clout(std::cout,"measurement"); - - auto& sLattice = grid.getSuperLattice(); - auto& sGeometry = grid.getSuperGeometry(); - auto& converter = grid.getConverter(); - - SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); - AnalyticalFfromSuperF2D<T> intpolatePressure(pressure, true); - SuperLatticePhysDrag2D<T,DESCRIPTOR> dragF(sLattice, sGeometry, 5, converter); - - const T radiusCylinder = cylinderD/2; - - const T point1[2] { cylinderX - radiusCylinder, cylinderY }; - const T point2[2] { cylinderX + radiusCylinder, cylinderY }; - - T pressureInFrontOfCylinder, pressureBehindCylinder; - intpolatePressure(&pressureInFrontOfCylinder, point1); - intpolatePressure(&pressureBehindCylinder, point2); - - T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder; - clout << "pressureDrop=" << pressureDrop; - - const int input[3] {}; - T drag[dragF.getTargetDim()] {}; - dragF(drag, input); - if (drag[0] > maxDrag) { - maxDrag = drag[0]; - }; - clout << "; drag=" << drag[0] << "; maxDrag: " << maxDrag << "; lift=" << drag[1] << endl; -} - -int main(int argc, char* argv[]) -{ - olbInit(&argc, &argv); - singleton::directories().setOutputDir("./tmp/"); - OstreamManager clout(std::cout,"main"); - - const Vector<T,2> coarseOrigin {0.0, 0.0}; - const Vector<T,2> coarseExtend {lx, ly}; - IndicatorCuboid2D<T> coarseCuboid(coarseExtend, coarseOrigin); - - Grid2D<T,DESCRIPTOR> coarseGrid( - coarseCuboid, - RelaxationTime<T>(tau), - N, - PhysCharacteristics); - const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); - const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); - - prepareGeometry(coarseGrid, domainOrigin, domainExtend); - const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); const Vector<T,2> fineOutflowExtend {1*cylinderD, domainExtend[1]}; const Vector<T,2> fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0}; auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false); - prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); { const Vector<T,2> origin = fineOutflowGrid.getOrigin(); @@ -294,7 +78,7 @@ int main(int argc, char* argv[]) const Vector<T,2> fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0}; auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false); - prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); { const Vector<T,2> origin = fineOutflowGrid2.getOrigin(); @@ -308,8 +92,29 @@ int main(int argc, char* argv[]) IndicatorCuboid2D<T> refined(extend, origin + Vector<T,2> {coarseDeltaX,0}); fineOutflowGrid.getSuperGeometry().reset(refined); } +} + +int main(int argc, char* argv[]) +{ + olbInit(&argc, &argv); + singleton::directories().setOutputDir("./tmp/"); + OstreamManager clout(std::cout,"main"); - coarseGrid.forEachGrid(prepareLattice); + IndicatorCuboid2D<T> coarseCuboid(SchaeferTurek::modelExtend, SchaeferTurek::modelOrigin); + + Grid2D<T,DESCRIPTOR> coarseGrid( + coarseCuboid, + RelaxationTime<T>(tau), + N, + PhysCharacteristics); + const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); + const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); + + SchaeferTurek::prepareGeometry(coarseGrid, domainOrigin, domainExtend); + + setupRefinement(coarseGrid, domainOrigin, domainExtend); + + coarseGrid.forEachGrid(SchaeferTurek::prepareLattice); clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl; clout << "Starting simulation..." << endl; @@ -320,8 +125,10 @@ int main(int argc, char* argv[]) coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); timer.start(); + Grid2D<T,DESCRIPTOR>& cylinderGrid = coarseGrid.locate(SchaeferTurek::cylinderCenter); + for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { - setBoundaryValues(coarseGrid, iT); + SchaeferTurek::setBoundaryValues(coarseGrid, iT); coarseGrid.collideAndStream(); @@ -330,10 +137,10 @@ int main(int argc, char* argv[]) timer.printStep(); coarseGrid.forEachGrid("cylinder2d", [&](Grid2D<T,DESCRIPTOR>& grid, const std::string& id) { - getResults(grid, id, iT); + SchaeferTurek::getResults(grid, id, iT); }); - takeMeasurements(coarseGrid); + SchaeferTurek::takeMeasurements(cylinderGrid, iT); } } |