summaryrefslogtreecommitdiff
path: root/examples/laminar/cylinder2d/cylinder2d.cpp
diff options
context:
space:
mode:
authorAdrian Kummerlaender2019-06-24 14:43:36 +0200
committerAdrian Kummerlaender2019-06-24 14:43:36 +0200
commit94d3e79a8617f88dc0219cfdeedfa3147833719d (patch)
treec1a6894679563e271f5c6ea7a17fa3462f7212a3 /examples/laminar/cylinder2d/cylinder2d.cpp
downloadgrid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.gz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.bz2
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.lz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.xz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.zst
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.zip
Initialize at openlb-1-3
Diffstat (limited to 'examples/laminar/cylinder2d/cylinder2d.cpp')
-rw-r--r--examples/laminar/cylinder2d/cylinder2d.cpp386
1 files changed, 386 insertions, 0 deletions
diff --git a/examples/laminar/cylinder2d/cylinder2d.cpp b/examples/laminar/cylinder2d/cylinder2d.cpp
new file mode 100644
index 0000000..b7879cb
--- /dev/null
+++ b/examples/laminar/cylinder2d/cylinder2d.cpp
@@ -0,0 +1,386 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2006-2014 Jonas Latt, Mathias J. Krause,
+ * Vojtech Cvrcek, Peter Weisbrod
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* cylinder2d.cpp:
+ * This example examines a steady flow past a cylinder placed in a channel.
+ * The cylinder is offset somewhat from the center of the flow to make the
+ * steady-state symmetrical flow unstable. At the inlet, a Poiseuille profile is
+ * imposed on the velocity, whereas the outlet implements a Dirichlet pressure
+ * condition set by p = 0.
+ * Inspired by "Benchmark Computations of Laminar Flow Around
+ * a Cylinder" by M.Schäfer and S.Turek. For high resolution, low
+ * latticeU, and enough time to converge, the results for pressure drop, drag
+ * and lift lie within the estimated intervals for the exact results.
+ * An unsteady flow with Karman vortex street can be created by changing the
+ * Reynolds number to Re=100.
+ */
+
+
+#include "olb2D.h"
+#ifndef OLB_PRECOMPILED // Unless precompiled version is used,
+#include "olb2D.hh" // include full template code
+#endif
+#include <vector>
+#include <cmath>
+#include <iostream>
+#include <fstream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace olb::util;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D2Q9<>
+
+
+// Parameters for the simulation setup
+const int N = 10; // resolution of the model
+const T Re = 20.; // Reynolds number
+const T maxPhysT = 16.; // max. simulation time in s, SI unit
+const T L = 0.1/N; // latticeL
+const T lengthX = 2.2;
+const T lengthY = .41+L;
+const T centerCylinderX = 0.2;
+const T centerCylinderY = 0.2+L/2.;
+const T radiusCylinder = 0.05;
+
+
+// Stores geometry information in form of material numbers
+void prepareGeometry( UnitConverter<T, DESCRIPTOR> const& converter,
+ SuperGeometry2D<T>& superGeometry )
+{
+
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ Vector<T,2> extend( lengthX,lengthY );
+ Vector<T,2> center( centerCylinderX,centerCylinderY );
+ Vector<T,2> origin;
+ IndicatorCircle2D<T> circle( center, radiusCylinder );
+
+ superGeometry.rename( 0,2 );
+
+ superGeometry.rename( 2,1,1,1 );
+
+ // Set material number for inflow
+ extend[0] = 2.*L;
+ origin[0] = -L;
+ IndicatorCuboid2D<T> inflow( extend, origin );
+ superGeometry.rename( 2,3,1,inflow );
+ // Set material number for outflow
+ origin[0] = lengthX-L;
+ IndicatorCuboid2D<T> outflow( extend, origin );
+ superGeometry.rename( 2,4,1,outflow );
+ // Set material number for cylinder
+ superGeometry.rename( 1,5,circle );
+
+ // Removes all not needed boundary voxels outside the surface
+ superGeometry.clean();
+ superGeometry.checkForErrors();
+
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+// Set up the geometry of the simulation
+void prepareLattice( SuperLattice2D<T,DESCRIPTOR>& sLattice,
+ UnitConverter<T, DESCRIPTOR> const& converter,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition,
+ sOffLatticeBoundaryCondition2D<T,DESCRIPTOR>& offBc,
+ SuperGeometry2D<T>& superGeometry )
+{
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ // Material=0 -->do nothing
+ sLattice.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ // Material=1 -->bulk dynamics
+ // Material=3 -->bulk dynamics (inflow)
+ // Material=4 -->bulk dynamics (outflow)
+ auto bulkIndicator = superGeometry.getMaterialIndicator({1, 3, 4});
+ sLattice.defineDynamics( bulkIndicator, &bulkDynamics );
+
+ // Material=2 -->bounce back
+ sLattice.defineDynamics( superGeometry, 2, &instances::getBounceBack<T, DESCRIPTOR>() );
+
+ // Setting of the boundary conditions
+ sBoundaryCondition.addVelocityBoundary( superGeometry, 3, omega );
+ sBoundaryCondition.addPressureBoundary( superGeometry, 4, omega );
+
+ // Material=5 -->bounce back
+ //sLattice.defineDynamics(superGeometry, 5, &instances::getBounceBack<T, DESCRIPTOR>());
+
+ // Material=5 -->bouzidi
+
+ Vector<T,2> center( centerCylinderX,centerCylinderY );
+ IndicatorCircle2D<T> circle( center, radiusCylinder );
+
+ sLattice.defineDynamics( superGeometry, 5, &instances::getNoDynamics<T,DESCRIPTOR>() );
+ offBc.addZeroVelocityBoundary( superGeometry, 5, circle );
+
+ // Initial conditions
+ AnalyticalConst2D<T,T> rhoF( 1 );
+ std::vector<T> velocity( 2,T( 0 ) );
+ AnalyticalConst2D<T,T> uF( velocity );
+
+ // Initialize all values of distribution functions to their local equilibrium
+ sLattice.defineRhoU( bulkIndicator, rhoF, uF );
+ sLattice.iniEquilibrium( bulkIndicator, rhoF, uF );
+
+ // Make the lattice ready for simulation
+ sLattice.initialize();
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+// Generates a slowly increasing inflow for the first iTMaxStart timesteps
+void setBoundaryValues( SuperLattice2D<T, DESCRIPTOR>& sLattice,
+ UnitConverter<T, DESCRIPTOR> const& converter, int iT,
+ SuperGeometry2D<T>& superGeometry )
+{
+
+ OstreamManager clout( std::cout,"setBoundaryValues" );
+
+ // No of time steps for smooth start-up
+ int iTmaxStart = converter.getLatticeTime( maxPhysT*0.4 );
+ int iTupdate = 5;
+
+ if ( iT%iTupdate==0 && iT<= iTmaxStart ) {
+ // Smooth start curve, sinus
+ // SinusStartScale<T,int> StartScale(iTmaxStart, T(1));
+
+ // Smooth start curve, polynomial
+ PolynomialStartScale<T,T> StartScale( iTmaxStart, T( 1 ) );
+
+ // Creates and sets the Poiseuille inflow profile using functors
+ T iTvec[1] = {T( iT )};
+ T frac[1] = {};
+ StartScale( frac,iTvec );
+ T maxVelocity = converter.getCharLatticeVelocity()*3./2.*frac[0];
+ T distance2Wall = L/2.;
+ Poiseuille2D<T> poiseuilleU( superGeometry, 3, maxVelocity, distance2Wall );
+
+ sLattice.defineU( superGeometry, 3, poiseuilleU );
+ }
+
+}
+
+// Computes the pressure drop between the voxels before and after the cylinder
+void getResults( SuperLattice2D<T, DESCRIPTOR>& sLattice,
+ UnitConverter<T, DESCRIPTOR> const& converter, int iT,
+ SuperGeometry2D<T>& superGeometry, Timer<T>& timer,
+ CircularBuffer<T>& buffer )
+{
+
+ OstreamManager clout( std::cout,"getResults" );
+
+ SuperVTMwriter2D<T> vtmWriter( "cylinder2d" );
+ SuperLatticePhysVelocity2D<T, DESCRIPTOR> velocity( sLattice, converter );
+ SuperLatticePhysPressure2D<T, DESCRIPTOR> pressure( sLattice, converter );
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( pressure );
+
+ const int vtkIter = converter.getLatticeTime( .3 );
+ const int statIter = converter.getLatticeTime( .1 );
+
+ T point[2] = {};
+ point[0] = centerCylinderX + 3*radiusCylinder;
+ point[1] = centerCylinderY;
+ AnalyticalFfromSuperF2D<T> intpolateP( pressure, true );
+ T p;
+ intpolateP( &p,point );
+ buffer.insert(p);
+
+ if ( iT == 0 ) {
+ // Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry2D<T, DESCRIPTOR> geometry( sLattice, superGeometry );
+ SuperLatticeCuboid2D<T, DESCRIPTOR> cuboid( sLattice );
+ SuperLatticeRank2D<T, DESCRIPTOR> rank( sLattice );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+
+ vtmWriter.createMasterFile();
+ }
+
+ // Writes the vtk files
+ if ( iT%vtkIter == 0 && iT > 0 ) {
+ vtmWriter.write( iT );
+
+ SuperEuklidNorm2D<T, DESCRIPTOR> normVel( velocity );
+ BlockReduction2D2D<T> planeReduction( normVel, 600, BlockDataSyncMode::ReduceOnly );
+ // write output as JPEG
+ heatmap::write(planeReduction, iT);
+ }
+
+ // Gnuplot constructor (must be static!)
+ // for real-time plotting: gplot("name", true) // experimental!
+ static Gnuplot<T> gplot( "drag" );
+
+ // write pdf at last time step
+ if ( iT == converter.getLatticeTime( maxPhysT )-1 ) {
+ // writes pdf
+ gplot.writePDF();
+ }
+
+ // Writes output on the console
+ if ( iT%statIter == 0 ) {
+ // Timer console output
+ timer.update( iT );
+ timer.printStep();
+ clout << "Circular buffer test: moving average pointwise value=" << buffer.average() << std::endl;
+
+ // Lattice statistics console output
+ sLattice.getStatistics().print( iT,converter.getPhysTime( iT ) );
+
+ // Drag, lift, pressure drop
+ AnalyticalFfromSuperF2D<T> intpolatePressure( pressure, true );
+ SuperLatticePhysDrag2D<T,DESCRIPTOR> drag( sLattice, superGeometry, 5, converter );
+
+
+ T point1[2] = {};
+ T point2[2] = {};
+
+ point1[0] = centerCylinderX - radiusCylinder;
+ point1[1] = centerCylinderY;
+
+ point2[0] = centerCylinderX + radiusCylinder;
+ point2[1] = centerCylinderY;
+
+ T p1, p2;
+ intpolatePressure( &p1,point1 );
+ intpolatePressure( &p2,point2 );
+
+ clout << "pressure1=" << p1;
+ clout << "; pressure2=" << p2;
+
+ T pressureDrop = p1-p2;
+ clout << "; pressureDrop=" << pressureDrop;
+
+ int input[3] = {};
+ T _drag[drag.getTargetDim()];
+ drag( _drag,input );
+ clout << "; drag=" << _drag[0] << "; lift=" << _drag[1] << endl;
+
+ // set data for gnuplot: input={xValue, yValue(s), names (optional), position of key (optional)}
+ gplot.setData( converter.getPhysTime( iT ), {_drag[0], 5.58}, {"drag(openLB)", "drag(schaeferTurek)"}, "bottom right", {'l','l'} );
+ // writes a png in one file for every timestep, if the file is open it can be used as a "liveplot"
+ gplot.writePNG();
+
+ // every (iT%vtkIter) write an png of the plot
+ if ( iT%( vtkIter ) == 0 ) {
+ // writes pngs: input={name of the files (optional), x range for the plot (optional)}
+ gplot.writePNG( iT, maxPhysT );
+ }
+ }
+}
+
+int main( int argc, char* argv[] )
+{
+
+ // === 1st Step: Initialization ===
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+ // display messages from every single mpi process
+ //clout.setMultiOutput(true);
+
+ UnitConverterFromResolutionAndRelaxationTime<T, DESCRIPTOR> const converter(
+ int {N}, // resolution: number of voxels per charPhysL
+ (T) 0.56, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
+ (T) 2.0*radiusCylinder, // charPhysLength: reference length of simulation geometry
+ (T) 0.2, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) 0.2*2.*radiusCylinder/Re, // physViscosity: physical kinematic viscosity in __m^2 / s__
+ (T) 1.0 // physDensity: physical density in __kg / m^3__
+ );
+ // Prints the converter log as console output
+ converter.print();
+ // Writes the converter log in a file
+ converter.write("cylinder2d");
+
+ // === 2rd Step: Prepare Geometry ===
+ Vector<T,2> extend( lengthX,lengthY );
+ Vector<T,2> origin;
+ IndicatorCuboid2D<T> cuboid( extend, origin );
+
+ // Instantiation of a cuboidGeometry with weights
+#ifdef PARALLEL_MODE_MPI
+ const int noOfCuboids = singleton::mpi().getSize();
+#else
+ const int noOfCuboids = 7;
+#endif
+ CuboidGeometry2D<T> cuboidGeometry( cuboid, L, noOfCuboids );
+
+ // Instantiation of a loadBalancer
+ HeuristicLoadBalancer<T> loadBalancer( cuboidGeometry );
+
+ // Instantiation of a superGeometry
+ SuperGeometry2D<T> superGeometry( cuboidGeometry, loadBalancer, 2 );
+
+ prepareGeometry( converter, superGeometry );
+
+ // === 3rd Step: Prepare Lattice ===
+ SuperLattice2D<T, DESCRIPTOR> sLattice( superGeometry );
+
+ BGKdynamics<T, DESCRIPTOR> bulkDynamics( converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta<T, DESCRIPTOR>() );
+
+ // choose between local and non-local boundary condition
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR> sBoundaryCondition( sLattice );
+ // createInterpBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition);
+ createLocalBoundaryCondition2D<T,DESCRIPTOR>( sBoundaryCondition );
+
+ sOffLatticeBoundaryCondition2D<T, DESCRIPTOR> sOffBoundaryCondition( sLattice );
+ createBouzidiBoundaryCondition2D<T, DESCRIPTOR> ( sOffBoundaryCondition );
+
+ prepareLattice( sLattice, converter, bulkDynamics, sBoundaryCondition, sOffBoundaryCondition, superGeometry );
+
+ // === 4th Step: Main Loop with Timer ===
+ CircularBuffer<T> buffer(converter.getLatticeTime(.2));
+ clout << "starting simulation..." << endl;
+ Timer<T> timer( converter.getLatticeTime( maxPhysT ), superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ for ( int iT = 0; iT < converter.getLatticeTime( maxPhysT ); ++iT ) {
+ // === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues( sLattice, converter, iT, superGeometry );
+
+ // === 6th Step: Collide and Stream Execution ===
+ sLattice.collideAndStream();
+
+ // === 7th Step: Computation and Output of the Results ===
+ getResults( sLattice, converter, iT, superGeometry, timer, buffer );
+ }
+
+ timer.stop();
+ timer.printSummary();
+}