summaryrefslogtreecommitdiff
path: root/examples/thermal/squareCavity2d/squareCavity2d.cpp
diff options
context:
space:
mode:
authorAdrian Kummerlaender2019-06-24 14:43:36 +0200
committerAdrian Kummerlaender2019-06-24 14:43:36 +0200
commit94d3e79a8617f88dc0219cfdeedfa3147833719d (patch)
treec1a6894679563e271f5c6ea7a17fa3462f7212a3 /examples/thermal/squareCavity2d/squareCavity2d.cpp
downloadgrid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.gz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.bz2
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.lz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.xz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.zst
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.zip
Initialize at openlb-1-3
Diffstat (limited to 'examples/thermal/squareCavity2d/squareCavity2d.cpp')
-rw-r--r--examples/thermal/squareCavity2d/squareCavity2d.cpp708
1 files changed, 708 insertions, 0 deletions
diff --git a/examples/thermal/squareCavity2d/squareCavity2d.cpp b/examples/thermal/squareCavity2d/squareCavity2d.cpp
new file mode 100644
index 0000000..6c86d70
--- /dev/null
+++ b/examples/thermal/squareCavity2d/squareCavity2d.cpp
@@ -0,0 +1,708 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2008 Orestis Malaspinas
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+// natural convection of air in a square cavity in 2D
+
+
+#include "olb2D.h"
+#include "olb2D.hh" // use only generic version!
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+
+// #define SMAGORINSKY
+
+#ifdef SMAGORINSKY
+ #define NSDESCRIPTOR D2Q9<FORCE,TAU_EFF>
+ #define TDESCRIPTOR D2Q5<VELOCITY,TAU_EFF>
+#else
+ #define NSDESCRIPTOR D2Q9<FORCE>
+ #define TDESCRIPTOR D2Q5<VELOCITY>
+#endif
+
+// Parameters for the simulation setup
+T Ra = 1e6; // Rayleigh-Zahl
+const T Pr = 0.71; // Prandtl-Zahl
+
+T lx;
+
+int N = 21; // resolution of the model
+
+const T maxPhysT = 1e4; // max. simulation time in s, SI unit
+const T epsilon = 5.e-3; // precision of the convergence (residuum)
+
+#ifdef SMAGORINSKY
+const int statisticsIntervall = 10; // take the turbulent statistics every 10 time steps after convergence
+const int statisticsEnsembles = 200; // take 20 ensembles for the turbulent statistics
+#endif
+
+const T Tcold = 275.15;
+const T Thot = 285.15;
+const T Tmean = (Tcold + Thot) / 2.0;
+
+/// Values from the literature studies from Davis
+T LitVelocity3[] = { 3.649, 3.696, 1.013 };
+T LitPosition3[] = { 0.813, 0.178 };
+T LitVelocity4[] = { 16.178, 19.617, 1.212 };
+T LitPosition4[] = { 0.823, 0.119 };
+T LitVelocity5[] = { 34.730, 68.590, 1.975 };
+T LitPosition5[] = { 0.855, 0.066 };
+T LitVelocity6[] = { 64.530, 219.36, 3.400 };
+T LitPosition6[] = { 0.850, 0.036 };
+T LitVelocity7[] = { 164.24, 701.92, 4.831};
+T LitPosition7[] = { 0.851, 0.020 };
+T LitVelocity8[] = { 389.88, 2241.37, 5.749};
+T LitPosition8[] = { 0.937, 0.011 };
+T LitVelocity9[] = { 503.24, 6820.07, 13.552};
+T LitPosition9[] = { 0.966, 0.0064 };
+T LitVelocity10[] = { 2323.00, 21463.00, 9.239};
+T LitPosition10[] = { 0.940, 0.491 };
+T LitNusselt3 = 1.117;
+T LitNusselt4 = 2.238;
+T LitNusselt5 = 4.509;
+T LitNusselt6 = 8.817;
+T LitNusselt7 = 16.790;
+T LitNusselt8 = 30.506;
+T LitNusselt9 = 57.350;
+T LitNusselt10 = 103.663;
+
+/// Compute the nusselt number at the left wall
+T computeNusselt(SuperGeometry2D<T>& superGeometry,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice)
+{
+ int voxel = 0, material = 0;
+ T T_x = 0, T_xplus1 = 0, T_xplus2 = 0;
+ T q = 0;
+
+ for (int iC = 0; iC < NSlattice.getLoadBalancer().size(); iC++) {
+ int ny = NSlattice.getBlockLattice(iC).getNy();
+ int iX = 0;
+ for (int iY = 0; iY < ny; ++iY) {
+ material = superGeometry.getBlockGeometry(iC).getMaterial(iX,iY);
+
+ T_x = ADlattice.getBlockLattice(iC).get(iX,iY).computeRho();
+ T_xplus1 = ADlattice.getBlockLattice(iC).get(iX+1,iY).computeRho();
+ T_xplus2 = ADlattice.getBlockLattice(iC).get(iX+2,iY).computeRho();
+
+ if ( material == 2 ) {
+ q += (3.0*T_x - 4.0*T_xplus1 + 1.0*T_xplus2)/2.0*N;
+ voxel++;
+ }
+ }
+ }
+
+#ifdef PARALLEL_MODE_MPI
+ singleton::mpi().reduceAndBcast(q, MPI_SUM);
+ singleton::mpi().reduceAndBcast(voxel, MPI_SUM);
+#endif
+
+ return q / (T)voxel;
+}
+
+/// Stores geometry information in form of material numbers
+void prepareGeometry(SuperGeometry2D<T>& superGeometry,
+ ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter)
+{
+
+ OstreamManager clout(std::cout,"prepareGeometry");
+ clout << "Prepare Geometry ..." << std::endl;
+
+ superGeometry.rename(0,4);
+
+ std::vector<T> extend(2,T());
+ extend[0] = lx;
+ extend[1] = lx;
+ std::vector<T> origin(2,T());
+ origin[0] = converter.getPhysLength(1);
+ origin[1] = 0.5*converter.getPhysLength(1);
+ IndicatorCuboid2D<T> cuboid2(extend, origin);
+
+ superGeometry.rename(4,1,cuboid2);
+
+ std::vector<T> extendwallleft(2,T(0));
+ extendwallleft[0] = converter.getPhysLength(1);
+ extendwallleft[1] = lx;
+ std::vector<T> originwallleft(2,T(0));
+ originwallleft[0] = 0.0;
+ originwallleft[1] = 0.0;
+ IndicatorCuboid2D<T> wallleft(extendwallleft, originwallleft);
+
+ std::vector<T> extendwallright(2,T(0));
+ extendwallright[0] = converter.getPhysLength(1);
+ extendwallright[1] = lx;
+ std::vector<T> originwallright(2,T(0));
+ originwallright[0] = lx+converter.getPhysLength(1);
+ originwallright[1] = 0.0;
+ IndicatorCuboid2D<T> wallright(extendwallright, originwallright);
+
+ superGeometry.rename(4,2,1,wallleft);
+ superGeometry.rename(4,3,1,wallright);
+
+
+ /// Removes all not needed boundary voxels outside the surface
+ superGeometry.clean();
+ /// Removes all not needed boundary voxels inside the surface
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+
+}
+
+void prepareLattice( ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice,
+ ForcedBGKdynamics<T, NSDESCRIPTOR> &bulkDynamics,
+ Dynamics<T, TDESCRIPTOR>& advectionDiffusionBulkDynamics,
+ sOnLatticeBoundaryCondition2D<T,NSDESCRIPTOR>& NSboundaryCondition,
+ sOnLatticeBoundaryCondition2D<T,TDESCRIPTOR>& TboundaryCondition,
+ SuperGeometry2D<T>& superGeometry )
+{
+
+ OstreamManager clout(std::cout,"prepareLattice");
+ clout << "Prepare Lattice ..." << std::endl;
+
+ T omega = converter.getLatticeRelaxationFrequency();
+ T Tomega = converter.getLatticeThermalRelaxationFrequency();
+
+ ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics<T, TDESCRIPTOR>());
+ NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics<T, NSDESCRIPTOR>());
+
+ ADlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &advectionDiffusionBulkDynamics);
+ ADlattice.defineDynamics(superGeometry, 4, &instances::getBounceBack<T, TDESCRIPTOR>());
+
+ NSlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &bulkDynamics);
+ NSlattice.defineDynamics(superGeometry, 4, &instances::getBounceBack<T, NSDESCRIPTOR>());
+
+ /// sets boundary
+ TboundaryCondition.addTemperatureBoundary(superGeometry.getMaterialIndicator({2, 3}), Tomega);
+ NSboundaryCondition.addVelocityBoundary(superGeometry.getMaterialIndicator({2, 3}), omega);
+
+ /// define initial conditions
+ AnalyticalConst2D<T,T> rho(1.);
+ AnalyticalConst2D<T,T> u0(0.0, 0.0);
+ AnalyticalConst2D<T,T> T_cold(converter.getLatticeTemperature(Tcold));
+ AnalyticalConst2D<T,T> T_hot(converter.getLatticeTemperature(Thot));
+ AnalyticalConst2D<T,T> T_mean(converter.getLatticeTemperature(Tmean));
+
+ /// for each material set Rho, U and the Equilibrium
+ NSlattice.defineRhoU(superGeometry.getMaterialIndicator({1, 2, 3}), rho, u0);
+ NSlattice.iniEquilibrium(superGeometry.getMaterialIndicator({1, 2, 3}), rho, u0);
+
+ ADlattice.defineRho(superGeometry, 1, T_mean);
+ ADlattice.iniEquilibrium(superGeometry, 1, T_mean, u0);
+ ADlattice.defineRho(superGeometry, 2, T_hot);
+ ADlattice.iniEquilibrium(superGeometry, 2, T_hot, u0);
+ ADlattice.defineRho(superGeometry, 3, T_cold);
+ ADlattice.iniEquilibrium(superGeometry, 3, T_cold, u0);
+
+#ifdef SMAGORINSKY
+ AnalyticalConst2D<T,T> tauNS(1./omega);
+ AnalyticalConst2D<T,T> tauAD(1./Tomega);
+
+ NSlattice.defineField<descriptors::TAU_EFF>( superGeometry.getMaterialIndicator({1, 2, 3}), tauNS );
+ ADlattice.defineField<descriptors::TAU_EFF>( superGeometry.getMaterialIndicator({1, 2, 3}), tauAD );
+#endif
+
+ /// Make the lattice ready for simulation
+ NSlattice.initialize();
+ ADlattice.initialize();
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+void setBoundaryValues( ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice,
+ int iT, SuperGeometry2D<T>& superGeometry)
+{
+
+ // nothing to do here
+
+}
+
+void getResults( ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice, int iT,
+ SuperGeometry2D<T>& superGeometry,
+ Timer<T>& timer,
+ bool converged)
+{
+
+ OstreamManager clout(std::cout,"getResults");
+
+ SuperVTMwriter2D<T> vtkWriter("thermalNaturalConvection2D");
+ SuperLatticePhysVelocity2D<T, NSDESCRIPTOR> velocity(NSlattice, converter);
+ SuperLatticePhysPressure2D<T, NSDESCRIPTOR> pressure(NSlattice, converter);
+ SuperLatticePhysTemperature2D<T, NSDESCRIPTOR, TDESCRIPTOR> temperature(ADlattice, converter);
+ vtkWriter.addFunctor( pressure );
+ vtkWriter.addFunctor( velocity );
+ vtkWriter.addFunctor( temperature );
+
+ AnalyticalFfromSuperF2D<T> interpolation(velocity, true);
+
+ const int statIter = 2000.;
+
+ if (iT == 0) {
+ /// Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry2D<T, NSDESCRIPTOR> geometry(NSlattice, superGeometry);
+ SuperLatticeCuboid2D<T, NSDESCRIPTOR> cuboid(NSlattice);
+ SuperLatticeRank2D<T, NSDESCRIPTOR> rank(NSlattice);
+ vtkWriter.write(geometry);
+ vtkWriter.write(cuboid);
+ vtkWriter.write(rank);
+
+ vtkWriter.createMasterFile();
+ }
+
+ /// Writes the VTK files
+ if (iT % statIter == 0 || converged) {
+
+ timer.update(iT);
+ timer.printStep();
+
+ /// NSLattice statistics console output
+ NSlattice.getStatistics().print(iT,converter.getPhysTime(iT));
+ /// ADLattice statistics console output
+ ADlattice.getStatistics().print(iT,converter.getPhysTime(iT));
+
+ vtkWriter.write(iT);
+
+ BlockReduction2D2D<T> planeReduction(temperature, 600, BlockDataSyncMode::ReduceOnly);
+ BlockGifWriter<T> gifWriter;
+ gifWriter.write(planeReduction, Tcold-.1, Thot+.1, iT, "temperature");
+
+ SuperEuklidNorm2D<T, NSDESCRIPTOR> normVel( velocity );
+ BlockReduction2D2D<T> planeReduction2(normVel, 600, BlockDataSyncMode::ReduceOnly);
+ BlockGifWriter<T> gifWriter2;
+ gifWriter2.write( planeReduction2, iT, "velocity" );
+
+ }
+
+ if ( converged ) {
+
+ T nusselt = computeNusselt(superGeometry, NSlattice, ADlattice);
+
+ /// Initialize vectors for data output
+ T xVelocity[2] = { T() };
+ T outputVelX[2] = { T() };
+ T yVelocity[2] = { T() };
+ T outputVelY[2] = { T() };
+ const int outputSize = 512;
+ Vector<T, outputSize> velX;
+ Vector<T, outputSize> posX;
+ Vector<T, outputSize> velY;
+ Vector<T, outputSize> posY;
+
+ /// loop for the resolution of the cavity at x = lx/2 in yDirection and vice versa
+ for (int n = 0; n < outputSize; ++n) {
+ T yPosition[2] = { lx / 2, lx * n / (T) outputSize };
+ T xPosition[2] = { lx * n / (T) outputSize, lx / 2 };
+
+ /// Interpolate xVelocity at x = lx/2 for each yPosition
+ interpolation(xVelocity, yPosition);
+ interpolation(yVelocity, xPosition);
+ /// Store the interpolated values to compare them among each other in order to detect the maximum
+ velX[n] = xVelocity[0];
+ posY[n] = yPosition[1];
+ velY[n] = yVelocity[1];
+ posX[n] = xPosition[0];
+
+ /// Initialize output with the corresponding velocities and positions at the origin
+ if (n == 0) {
+ outputVelX[0] = velX[0];
+ outputVelX[1] = posY[0];
+ outputVelY[0] = velY[0];
+ outputVelY[1] = posX[0];
+ }
+ /// look for the maximum velocity in xDirection and the corresponding position in yDirection
+ if (n > 0 && velX[n] > outputVelX[0]) {
+ outputVelX[0] = velX[n];
+ outputVelX[1] = posY[n];
+ }
+ /// look for the maximum velocity in yDirection and the corresponding position in xDirection
+ if (n > 0 && velY[n] > outputVelY[0]) {
+ outputVelY[0] = velY[n];
+ outputVelY[1] = posX[n];
+ }
+ }
+
+ // compare to De Vahl Davis' benchmark solutions
+ clout << "Comparison against De Vahl Davis (1983):" << endl;
+ if (Ra == 1e3) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity3[2] - outputVelY[0] / outputVelX[0]) / LitVelocity3[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[0] - outputVelX[1] / lx) / LitPosition3[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[1] - outputVelY[1] / lx) / LitPosition3[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt3 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e4) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity4[2] - outputVelY[0] / outputVelX[0]) / LitVelocity4[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[0] - outputVelX[1] / lx) / LitPosition4[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[1] - outputVelY[1] / lx) / LitPosition4[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt4 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e5) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity5[2] - outputVelY[0] / outputVelX[0]) / LitVelocity5[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[0] - outputVelX[1] / lx) / LitPosition5[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[1] - outputVelY[1] / lx) / LitPosition5[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt5 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e6) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity6[2] - outputVelY[0] / outputVelX[0]) / LitVelocity6[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[0] - outputVelX[1] / lx) / LitPosition6[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[1] - outputVelY[1] / lx) / LitPosition6[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt6 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e7) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity7[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity7[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity7[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity7[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity7[2] - outputVelY[0] / outputVelX[0]) / LitVelocity7[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition7[0] - outputVelX[1] / lx) / LitPosition7[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition7[1] - outputVelY[1] / lx) / LitPosition7[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt7 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e8) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity8[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity8[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity8[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity8[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity8[2] - outputVelY[0] / outputVelX[0]) / LitVelocity8[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition8[0] - outputVelX[1] / lx) / LitPosition8[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition8[1] - outputVelY[1] / lx) / LitPosition8[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt8 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e9) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity9[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity9[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity9[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity9[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity9[2] - outputVelY[0] / outputVelX[0]) / LitVelocity9[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition9[0] - outputVelX[1] / lx) / LitPosition9[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition9[1] - outputVelY[1] / lx) / LitPosition9[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt9 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e10) {
+ clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity10[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity10[0]) << endl;
+ clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity10[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity10[1]) << endl;
+ clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity10[2] - outputVelY[0] / outputVelX[0]) / LitVelocity10[2]) << endl;
+ clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition10[0] - outputVelX[1] / lx) / LitPosition10[0]) << endl;
+ clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition10[1] - outputVelY[1] / lx) / LitPosition10[1]) << endl;
+ clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt10 - nusselt) / nusselt) << endl;
+ }
+ if (singleton::mpi().isMainProcessor()) {
+ std::fstream fs;
+ fs.open("output.txt",
+ std::fstream::in | std::fstream::out | std::fstream::app);
+ fs << "Comparison against De Vahl Davis (1983):" << endl;
+ if (Ra == 1e3) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity3[2] - outputVelY[0] / outputVelX[0]) / LitVelocity3[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[0] - outputVelX[1] / lx) / LitPosition3[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[1] - outputVelY[1] / lx) / LitPosition3[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt3 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e4) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity4[2] - outputVelY[0] / outputVelX[0]) / LitVelocity4[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[0] - outputVelX[1] / lx) / LitPosition4[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[1] - outputVelY[1] / lx) / LitPosition4[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt4 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e5) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity5[2] - outputVelY[0] / outputVelX[0]) / LitVelocity5[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[0] - outputVelX[1] / lx) / LitPosition5[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[1] - outputVelY[1] / lx) / LitPosition5[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt5 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e6) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity6[2] - outputVelY[0] / outputVelX[0]) / LitVelocity6[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[0] - outputVelX[1] / lx) / LitPosition6[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[1] - outputVelY[1] / lx) / LitPosition6[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt6 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e7) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity7[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity7[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity7[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity7[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity7[2] - outputVelY[0] / outputVelX[0]) / LitVelocity7[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition7[0] - outputVelX[1] / lx) / LitPosition7[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition7[1] - outputVelY[1] / lx) / LitPosition7[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt7 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e8) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity8[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity8[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity8[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity8[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity8[2] - outputVelY[0] / outputVelX[0]) / LitVelocity8[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition8[0] - outputVelX[1] / lx) / LitPosition8[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition8[1] - outputVelY[1] / lx) / LitPosition8[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt8 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e9) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity9[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity9[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity9[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity9[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity9[2] - outputVelY[0] / outputVelX[0]) / LitVelocity9[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition9[0] - outputVelX[1] / lx) / LitPosition9[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition9[1] - outputVelY[1] / lx) / LitPosition9[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt9 - nusselt) / nusselt) << endl;
+ }
+ else if (Ra == 1e10) {
+ fs << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity10[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity10[0]) << endl;
+ fs << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity10[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity10[1]) << endl;
+ fs << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity10[2] - outputVelY[0] / outputVelX[0]) / LitVelocity10[2]) << endl;
+ fs << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition10[0] - outputVelX[1] / lx) / LitPosition10[0]) << endl;
+ fs << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition10[1] - outputVelY[1] / lx) / LitPosition10[1]) << endl;
+ fs << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt10 - nusselt) / nusselt) << endl;
+ }
+ }
+ }
+}
+
+int main(int argc, char *argv[])
+{
+
+ /// === 1st Step: Initialization ===
+ OstreamManager clout(std::cout,"main");
+ olbInit(&argc, &argv);
+ singleton::directories().setOutputDir("./tmp/");
+
+ #ifndef SMAGORINSKY
+ T tau = 0.9;
+ #endif
+ N = 32;
+
+ if (argc>=2) {
+ Ra = atof(argv[1]);
+ }
+
+ if (argc>=3) {
+ N = atof(argv[2]);
+ }
+ lx = pow(Ra * 15.126e-6 * 15.126e-6 / Pr / 9.81 / (Thot - Tcold) / 0.00341, (T) 1/3); // length of the square
+ T charU = 1.0 / lx /( Pr * 25.684e-3 / 15.126e-6 / 1.0 * 1.0 / 25.684e-3);
+
+ if (Ra==1e3) {
+ charU *= LitVelocity3[1];
+ N = 64;
+ }
+ if (Ra==1e4) {
+ charU *= LitVelocity4[1];
+ N = 128;
+ }
+ if (Ra==1e5) {
+ charU *= LitVelocity5[1];
+ N = 256;
+ }
+ if (Ra==1e6) {
+ charU *= LitVelocity6[1];
+ N = 512;
+ }
+ if (Ra==1e7) {
+ charU *= LitVelocity7[1];
+ }
+ if (Ra==1e8) {
+ charU *= LitVelocity8[1];
+ }
+ if (Ra==1e9) {
+ charU *= LitVelocity9[1];
+ }
+ if (Ra==1e10) {
+ charU *= LitVelocity10[1];
+ }
+
+
+ ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> converter(
+ (T) lx / N,
+ #ifdef SMAGORINSKY
+ (T) 2.*0.056/charU*lx/N,
+ #else
+ (T) (tau - 0.5) / descriptors::invCs2<T,NSDESCRIPTOR>() * pow((lx/N),2) / 15.126e-6,
+ #endif
+ (T) lx,
+ (T) charU,
+ (T) 15.126e-6,
+ (T) 1.0,
+ (T) 25.684e-3,
+ (T) Pr * 25.684e-3 / 15.126e-6 / 1.0,
+ (T) 0.00341,
+ (T) Tcold,
+ (T) Thot
+ );
+ converter.print();
+
+ /// === 2nd Step: Prepare Geometry ===
+ std::vector<T> extend(2,T());
+ extend[0] = lx + 2*converter.getPhysLength(1);
+ extend[1] = lx + converter.getPhysLength(1);
+ std::vector<T> origin(2,T());
+ IndicatorCuboid2D<T> cuboid(extend, origin);
+
+ /// Instantiation of an empty cuboidGeometry
+ CuboidGeometry2D<T> cuboidGeometry(cuboid, converter.getPhysDeltaX(), singleton::mpi().getSize());
+
+ /// Instantiation of a loadBalancer
+ HeuristicLoadBalancer<T> loadBalancer(cuboidGeometry);
+
+ /// Instantiation of a superGeometry
+ SuperGeometry2D<T> superGeometry(cuboidGeometry, loadBalancer, 2);
+
+ prepareGeometry(superGeometry, converter);
+
+ /// === 3rd Step: Prepare Lattice ===
+
+ SuperLattice2D<T, TDESCRIPTOR> ADlattice(superGeometry);
+ SuperLattice2D<T, NSDESCRIPTOR> NSlattice(superGeometry);
+
+ sOnLatticeBoundaryCondition2D<T, NSDESCRIPTOR> NSboundaryCondition(NSlattice);
+ createLocalBoundaryCondition2D<T, NSDESCRIPTOR>(NSboundaryCondition);
+
+ sOnLatticeBoundaryCondition2D<T, TDESCRIPTOR> TboundaryCondition(ADlattice);
+ createAdvectionDiffusionBoundaryCondition2D<T, TDESCRIPTOR>(TboundaryCondition);
+
+#ifdef SMAGORINSKY
+ ExternalTauEffLESForcedBGKdynamics<T, NSDESCRIPTOR> NSbulkDynamics(
+ converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,NSDESCRIPTOR>(), 0.1);
+
+ ExternalTauEffLESBGKdynamics<T, TDESCRIPTOR> TbulkDynamics(
+ converter.getLatticeThermalRelaxationFrequency(),
+ instances::getAdvectionDiffusionBulkMomenta<T,TDESCRIPTOR>(), 0.1);
+#else
+ ForcedBGKdynamics<T, NSDESCRIPTOR> NSbulkDynamics(
+ converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,NSDESCRIPTOR>());
+
+ AdvectionDiffusionBGKdynamics<T, TDESCRIPTOR> TbulkDynamics(
+ converter.getLatticeThermalRelaxationFrequency(),
+ instances::getAdvectionDiffusionBulkMomenta<T,TDESCRIPTOR>());
+#endif
+ // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
+ // This coupling must be necessarily be put on the Navier-Stokes lattice!!
+ // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
+
+ std::vector<T> dir{0.0, 1.0};
+
+ T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() *
+ converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient();
+
+ #ifdef SMAGORINSKY
+ SmagorinskyBoussinesqCouplingGenerator2D<T,NSDESCRIPTOR>
+ coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(lx),
+ boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir, 0.87);
+ #else
+ NavierStokesAdvectionDiffusionCouplingGenerator2D<T,NSDESCRIPTOR>
+ coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(lx),
+ boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir);
+ #endif
+
+ NSlattice.addLatticeCoupling(superGeometry, 1, coupling, ADlattice);
+
+ prepareLattice(converter,
+ NSlattice, ADlattice,
+ NSbulkDynamics, TbulkDynamics,
+ NSboundaryCondition, TboundaryCondition, superGeometry );
+
+
+ #ifdef SMAGORINSKY
+ SuperVTMwriter2D<T> vtkWriter("thermalNaturalConvection2D");
+
+ SuperLatticePhysTemperature2D<T,NSDESCRIPTOR, TDESCRIPTOR> sTemp(ADlattice,converter);
+ SuperLatticePhysVelocity2D<T,NSDESCRIPTOR> sVel(NSlattice,converter);
+
+ SuperLatticeTimeAveragedF2D<T> sAveragedTemp(sTemp);
+ SuperLatticeTimeAveragedF2D<T> sAveragedVel(sVel);
+ SuperLatticeTimeAveragedCrossCorrelationF2D<T> sAveragedTempVelCross(sTemp,sVel);
+ SuperLatticeTimeAveragedCrossCorrelationF2D<T> sAveragedVelVelCross(sVel,sVel);
+ #endif
+
+ /// === 4th Step: Main Loop with Timer ===
+ Timer<T> timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ util::ValueTracer<T> converge(6,epsilon);
+ bool converged = false;
+ for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
+
+ if (converge.hasConverged() && !converged) {
+ converged = true;
+ clout << "Simulation converged." << endl;