summaryrefslogtreecommitdiff
path: root/examples/turbulence/venturi3d/venturi3d.cpp
diff options
context:
space:
mode:
authorAdrian Kummerlaender2019-06-24 14:43:36 +0200
committerAdrian Kummerlaender2019-06-24 14:43:36 +0200
commit94d3e79a8617f88dc0219cfdeedfa3147833719d (patch)
treec1a6894679563e271f5c6ea7a17fa3462f7212a3 /examples/turbulence/venturi3d/venturi3d.cpp
downloadgrid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.gz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.bz2
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.lz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.xz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.zst
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.zip
Initialize at openlb-1-3
Diffstat (limited to 'examples/turbulence/venturi3d/venturi3d.cpp')
-rw-r--r--examples/turbulence/venturi3d/venturi3d.cpp284
1 files changed, 284 insertions, 0 deletions
diff --git a/examples/turbulence/venturi3d/venturi3d.cpp b/examples/turbulence/venturi3d/venturi3d.cpp
new file mode 100644
index 0000000..fc3dd55
--- /dev/null
+++ b/examples/turbulence/venturi3d/venturi3d.cpp
@@ -0,0 +1,284 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2014 Mathias J. Krause, Thomas Henn,
+ * Cyril Masquelier
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* venturi3d.cpp:
+ * This example examines a steady flow in a venturi tube. At the
+ * main inlet, a Poiseuille profile is imposed as Dirichlet velocity
+ * boundary condition, whereas at the outlet and the minor inlet
+ * a Dirichlet pressure condition is set by p=0 (i.e. rho=1).
+ *
+ * The example shows the usage of the Indicator functors to
+ * build up a geometry and explains how to set boundary conditions
+ * automatically.
+ */
+
+#include "olb3D.h"
+#ifndef OLB_PRECOMPILED // Unless precompiled version is used
+#include "olb3D.hh" // Include full template code
+#endif
+
+#include <iostream>
+#include <fstream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace olb::util;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D3Q19<>
+
+T maxPhysT = 200.0; // max. simulation time in s, SI unit
+
+SuperGeometry3D<T> prepareGeometry( ) {
+
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ std::string fName("venturi3d.xml");
+ XMLreader config(fName);
+
+ std::shared_ptr<IndicatorF3D<T> > inflow = createIndicatorCylinder3D<T>(config["Geometry"]["Inflow"]["IndicatorCylinder3D"], false);
+ std::shared_ptr<IndicatorF3D<T> > outflow0 = createIndicatorCylinder3D<T>(config["Geometry"]["Outflow0"]["IndicatorCylinder3D"], false);
+ std::shared_ptr<IndicatorF3D<T> > outflow1 = createIndicatorCylinder3D<T>(config["Geometry"]["Outflow1"]["IndicatorCylinder3D"], false);
+
+ std::shared_ptr<IndicatorF3D<T> > venturi = createIndicatorF3D<T>(config["Geometry"]["Venturi"], false);
+
+ // Build CoboidGeometry from IndicatorF (weights are set, remove and shrink is done)
+ int N = config["Application"]["Discretization"]["Resolution"].get<int>();
+ CuboidGeometry3D<T>* cuboidGeometry = new CuboidGeometry3D<T>( *venturi, 1./N, 20*singleton::mpi().getSize() );
+
+ // Build LoadBalancer from CuboidGeometry (weights are respected)
+ HeuristicLoadBalancer<T>* loadBalancer = new HeuristicLoadBalancer<T>( *cuboidGeometry );
+
+ // Default instantiation of superGeometry
+ SuperGeometry3D<T> superGeometry( *cuboidGeometry, *loadBalancer, 2 );
+
+ // Set boundary voxels by rename material numbers
+ superGeometry.rename( 0,2, venturi );
+ superGeometry.rename( 2,1,1,1,1 );
+ superGeometry.rename( 2,3,1, inflow );
+ superGeometry.rename( 2,4,1, outflow0 );
+ superGeometry.rename( 2,5,1, outflow1 );
+
+ // Removes all not needed boundary voxels outside the surface
+ superGeometry.clean();
+ // Removes all not needed boundary voxels inside the surface
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+
+
+ superGeometry.getStatistics().print();
+ superGeometry.communicate();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+ return superGeometry;
+}
+
+
+void prepareLattice( SuperLattice3D<T,DESCRIPTOR>& sLattice,
+ UnitConverter<T, DESCRIPTOR> const& converter,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ sOnLatticeBoundaryCondition3D<T,DESCRIPTOR>& bc,
+ sOffLatticeBoundaryCondition3D<T,DESCRIPTOR>& offBc,
+ SuperGeometry3D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ // Material=0 -->do nothing
+ sLattice.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ // Material=1 -->bulk dynamics
+ sLattice.defineDynamics( superGeometry, 1, &bulkDynamics );
+
+ // Material=2 -->bounce back
+ sLattice.defineDynamics( superGeometry, 2, &instances::getBounceBack<T, DESCRIPTOR>() );
+
+ // Material=3 -->bulk dynamics (inflow)
+ sLattice.defineDynamics( superGeometry, 3, &bulkDynamics );
+
+ // Material=4 -->bulk dynamics (outflow)
+ sLattice.defineDynamics( superGeometry, 4, &bulkDynamics );
+
+ // Material=5 -->bulk dynamics (2nd outflow)
+ sLattice.defineDynamics( superGeometry, 5, &bulkDynamics );
+
+ // Setting of the boundary conditions
+ bc.addVelocityBoundary( superGeometry, 3, omega );
+ bc.addPressureBoundary( superGeometry, 4, omega );
+ bc.addPressureBoundary( superGeometry, 5, omega );
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+// Generates a slowly increasing sinuidal inflow for the first iTMax timesteps
+void setBoundaryValues( SuperLattice3D<T, DESCRIPTOR>& sLattice,
+ UnitConverter<T, DESCRIPTOR> const& converter, int iT,
+ SuperGeometry3D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"setBoundaryValues" );
+
+ // No of time steps for smooth start-up
+ int iTmaxStart = converter.getLatticeTime( maxPhysT*0.8 );
+ int iTperiod = 50;
+
+ if ( iT==0 ) {
+ // Make the lattice ready for simulation
+ sLattice.initialize();
+ }
+
+ else if ( iT%iTperiod==0 && iT<= iTmaxStart ) {
+ //clout << "Set Boundary Values ..." << std::endl;
+
+ //SinusStartScale<T,int> startScale(iTmaxStart, (T) 1);
+ PolynomialStartScale<T,int> startScale( iTmaxStart, T( 1 ) );
+ int iTvec[1]= {iT};
+ T frac = T();
+ startScale( &frac,iTvec );
+
+ // Creates and sets the Poiseuille inflow profile using functors
+ CirclePoiseuille3D<T> poiseuilleU( superGeometry, 3, frac*converter.getCharLatticeVelocity(), converter.getConversionFactorLength() );
+ sLattice.defineU( superGeometry, 3, poiseuilleU );
+
+ //clout << "step=" << iT << "; scalingFactor=" << frac << std::endl;
+ }
+ //clout << "Set Boundary Values ... ok" << std::endl;
+}
+
+void getResults( SuperLattice3D<T, DESCRIPTOR>& sLattice,
+ UnitConverter<T, DESCRIPTOR>& converter, int iT,
+ SuperGeometry3D<T>& superGeometry, Timer<T>& timer ) {
+
+ OstreamManager clout( std::cout,"getResults" );
+ SuperVTMwriter3D<T> vtmWriter( "venturi3d" );
+
+ if ( iT==0 ) {
+ // Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry3D<T, DESCRIPTOR> geometry( sLattice, superGeometry );
+ SuperLatticeCuboid3D<T, DESCRIPTOR> cuboid( sLattice );
+ SuperLatticeRank3D<T, DESCRIPTOR> rank( sLattice );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+ vtmWriter.createMasterFile();
+ }
+
+ // Writes the vtm files
+ if ( iT%converter.getLatticeTime( 1. )==0 ) {
+ // Create the data-reading functors...
+ SuperLatticePhysVelocity3D<T, DESCRIPTOR> velocity( sLattice, converter );
+ SuperLatticePhysPressure3D<T, DESCRIPTOR> pressure( sLattice, converter );
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( pressure );
+ vtmWriter.write( iT );
+
+ SuperEuklidNorm3D<T, DESCRIPTOR> normVel( velocity );
+ BlockReduction3D2D<T> planeReduction( normVel, {0, 0, 1} );
+
+ // write output as JPEG
+ heatmap::write(planeReduction, iT);
+
+ // write output as JPEG and changing properties
+ heatmap::plotParam<T> jpeg_Param;
+ jpeg_Param.name = "outflow";
+ jpeg_Param.contourlevel = 5;
+ jpeg_Param.colour = "blackbody";
+ jpeg_Param.zoomOrigin = {0.6, 0.3};
+ jpeg_Param.zoomExtend = {0.4, 0.7};
+ heatmap::write(planeReduction, iT, jpeg_Param);
+ }
+
+ // Writes output on the console
+ if ( iT%converter.getLatticeTime( 1. )==0 ) {
+ timer.update( iT );
+ timer.printStep();
+ sLattice.getStatistics().print( iT, converter.getPhysTime( iT ) );
+
+ }
+}
+
+
+int main( int argc, char* argv[] ) {
+
+ // === 1st Step: Initialization ===
+
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+ // display messages from every single mpi process
+ // clout.setMultiOutput(true);
+
+ std::string fName("venturi3d.xml");
+ XMLreader config(fName);
+
+ UnitConverter<T, DESCRIPTOR>* converter = createUnitConverter<T, DESCRIPTOR>(config);
+
+ // Prints the converter log as console output
+ converter->print();
+ // Writes the converter log in a file
+ converter->write("venturi3d");
+
+ // === 2nd Step: Prepare Geometry ===
+
+ SuperGeometry3D<T> superGeometry( prepareGeometry() );
+
+ // === 3rd Step: Prepare Lattice ===
+
+ SuperLattice3D<T, DESCRIPTOR> sLattice( superGeometry );
+
+ RLBdynamics<T, DESCRIPTOR> bulkDynamics( converter->getLatticeRelaxationFrequency(), instances::getBulkMomenta<T, DESCRIPTOR>() );
+
+ sOnLatticeBoundaryCondition3D<T, DESCRIPTOR> sBoundaryCondition( sLattice );
+ createInterpBoundaryCondition3D<T, DESCRIPTOR> ( sBoundaryCondition );
+
+ sOffLatticeBoundaryCondition3D<T, DESCRIPTOR> sOffBoundaryCondition( sLattice );
+ createBouzidiBoundaryCondition3D<T, DESCRIPTOR> ( sOffBoundaryCondition );
+
+ prepareLattice( sLattice, *converter, bulkDynamics, sBoundaryCondition, sOffBoundaryCondition, superGeometry );
+
+ Timer<T> timer( converter->getLatticeTime( maxPhysT ), superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+ getResults( sLattice, *converter, 0, superGeometry, timer );
+
+ // === 4th Step: Main Loop with Timer ===
+ for ( int iT = 0; iT <= converter->getLatticeTime( maxPhysT ); ++iT ) {
+
+ // === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues( sLattice, *converter, iT, superGeometry );
+
+ // === 6th Step: Collide and Stream Execution ===
+ sLattice.collideAndStream();
+
+ // === 7th Step: Computation and Output of the Results ===
+ getResults( sLattice, *converter, iT, superGeometry, timer );
+ }
+
+ timer.stop();
+ timer.printSummary();
+}