summaryrefslogtreecommitdiff
path: root/src/dynamics/dynamics.h
diff options
context:
space:
mode:
authorAdrian Kummerlaender2019-06-24 14:43:36 +0200
committerAdrian Kummerlaender2019-06-24 14:43:36 +0200
commit94d3e79a8617f88dc0219cfdeedfa3147833719d (patch)
treec1a6894679563e271f5c6ea7a17fa3462f7212a3 /src/dynamics/dynamics.h
downloadgrid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.gz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.bz2
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.lz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.xz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.zst
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.zip
Initialize at openlb-1-3
Diffstat (limited to 'src/dynamics/dynamics.h')
-rw-r--r--src/dynamics/dynamics.h995
1 files changed, 995 insertions, 0 deletions
diff --git a/src/dynamics/dynamics.h b/src/dynamics/dynamics.h
new file mode 100644
index 0000000..40970b5
--- /dev/null
+++ b/src/dynamics/dynamics.h
@@ -0,0 +1,995 @@
+/* This file is part of the OpenLB library
+ *
+ * Copyright (C) 2006, 2007 Jonas Latt, Mathias J. Krause
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+/** \file
+ * A collection of dynamics classes (e.g. BGK) with which a Cell object
+ * can be instantiated -- header file.
+ */
+#ifndef LB_DYNAMICS_H
+#define LB_DYNAMICS_H
+
+#include "latticeDescriptors.h"
+#include "core/util.h"
+#include "core/postProcessing.h"
+#include "core/latticeStatistics.h"
+
+namespace olb {
+
+
+template<typename T, typename DESCRIPTOR> class Cell;
+
+/// Interface for the dynamics classes
+template<typename T, typename DESCRIPTOR>
+struct Dynamics {
+ /// Destructor: virtual to enable inheritance
+ virtual ~Dynamics() { }
+ /// Implementation of the collision step
+ virtual void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) =0;
+ /// Compute equilibrium distribution function
+ virtual T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const;
+ /// Initialize cell at equilibrium distribution
+ void iniEquilibrium(Cell<T,DESCRIPTOR>& cell, T rho, const T u[DESCRIPTOR::d]);
+ /// Compute particle density on the cell.
+ /** \return particle density
+ */
+ virtual T computeRho(Cell<T,DESCRIPTOR> const& cell) const =0;
+ /// Compute fluid velocity on the cell.
+ /** \param u fluid velocity
+ */
+ virtual void computeU( Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const =0;
+ /// Compute fluid momentum (j=rho*u) on the cell.
+ /** \param j fluid momentum
+ */
+ virtual void computeJ( Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const =0;
+ /// Compute components of the stress tensor on the cell.
+ /** \param pi stress tensor */
+ virtual void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const =0;
+ /// Compute fluid velocity and particle density on the cell.
+ /** \param rho particle density
+ * \param u fluid velocity
+ */
+ virtual void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const =0;
+ /// Compute all momenta on the cell, up to second order.
+ /** \param rho particle density
+ * \param u fluid velocity
+ * \param pi stress tensor
+ */
+ virtual void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const =0;
+ /// Set particle density on the cell.
+ /** \param rho particle density
+ */
+ virtual void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) =0;
+ virtual void defineRho(int iPop, T rho);
+ /// Set fluid velocity on the cell.
+ /** \param u fluid velocity
+ */
+ virtual void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) =0;
+ /// Functions for offLattice Velocity boundary conditions
+ virtual void setBoundaryIntersection(int iPop, T distance);
+ virtual bool getBoundaryIntersection(int iPop, T point[DESCRIPTOR::d]);
+ virtual void defineU(const T u[DESCRIPTOR::d]);
+ virtual void defineU(int iPop, const T u[DESCRIPTOR::d]);
+ virtual T getVelocityCoefficient(int iPop);
+
+ /// Define fluid velocity and particle density on the cell.
+ /** \param rho particle density
+ * \param u fluid velocity
+ */
+ virtual void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) =0;
+ /// Define all momenta on the cell, up to second order.
+ /** \param rho particle density
+ * \param u fluid velocity
+ * \param pi stress tensor
+ */
+ virtual void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) =0;
+ /// Get local relaxation parameter of the dynamics
+ virtual T getOmega() const =0;
+ /// Set local relaxation parameter of the dynamics
+ virtual void setOmega(T omega) =0;
+};
+
+/// Interface for classes that compute velocity momenta
+/** This class is useful for example to distinguish between bulk and
+ * boundary nodes, given that on the boundaries, a particular strategy
+ * must be applied to compute the velocity momenta.
+ */
+template<typename T, typename DESCRIPTOR>
+struct Momenta {
+ /// Destructor: virtual to enable inheritance
+ virtual ~Momenta() { }
+ /// Compute particle density on the cell.
+ virtual T computeRho(Cell<T,DESCRIPTOR> const& cell) const =0;
+ /// Compute fluid velocity on the cell.
+ virtual void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const =0;
+ /// Compute fluid momentum on the cell.
+ virtual void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const =0;
+ /// Compute components of the stress tensor on the cell.
+ virtual void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const =0;
+ /// Compute fluid velocity and particle density on the cell.
+ virtual void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const;
+ /// Compute all momenta on the cell, up to second order.
+ virtual void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const;
+ /// Set particle density on the cell.
+ virtual void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) =0;
+ /// Set fluid velocity on the cell.
+ virtual void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) =0;
+ /// Define fluid velocity and particle density on the cell.
+ virtual void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]);
+ /// Define all momenta on the cell, up to second order.
+ virtual void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) =0;
+};
+
+/// Abstract base for dynamics classes
+/** In this version of the Dynamics classes, the computation of the
+ * velocity momenta is taken care of by an object of type Momenta.
+ */
+template<typename T, typename DESCRIPTOR>
+class BasicDynamics : public Dynamics<T,DESCRIPTOR> {
+public:
+ /// Must be contructed with an object of type Momenta
+ BasicDynamics(Momenta<T,DESCRIPTOR>& momenta);
+ /// Implemented via the Momenta object
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ /// Implemented via the Momenta object
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Implemented via the Momenta object
+ void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const override;
+ /// Implemented via the Momenta object
+ void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Implemented via the Momenta object
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ /// Implemented via the Momenta object
+ void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Implemented via the Momenta object
+ void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) override;
+ /// Implemented via the Momenta object
+ void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) override;
+ /// Implemented via the Momenta object
+ void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) override;
+ /// Implemented via the Momenta object
+ void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) override;
+protected:
+ Momenta<T,DESCRIPTOR>& _momenta; ///< computation of velocity momenta
+};
+
+/// Implementation of a generic dynamics to realize a pressure drop at a periodic boundary
+template<typename T, typename DESCRIPTOR, typename BaseDynamics>
+class PeriodicPressureDynamics : public BaseDynamics {
+
+public:
+ /// Constructor
+ PeriodicPressureDynamics(BaseDynamics& baseDynamics, T densityOffset, int nx, int ny, int nz=0) : BaseDynamics(baseDynamics), _densityOffset(densityOffset), _nx(nx), _ny(ny), _nz(nz) {};
+
+ /// Implementation of the collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override{
+ BaseDynamics::collide(cell,statistics_);
+ for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) {
+ if ( ((_nx==1 || _nx==-1) && descriptors::c<DESCRIPTOR>(iPop,0)==_nx) || ((_ny==1 || _ny==-1) && descriptors::c<DESCRIPTOR>(iPop,1)==_ny) || (DESCRIPTOR::d==3 && !_nz && descriptors::c<DESCRIPTOR>(iPop,2)==_nz) ) {
+ cell[iPop] += (cell[iPop] + descriptors::t<T,DESCRIPTOR>(iPop))*_densityOffset;
+ }
+ }
+};
+
+private:
+ T _densityOffset;
+ int _nx, _ny, _nz;
+};
+
+/// Implementation of the BGK collision step
+template<typename T, typename DESCRIPTOR>
+class BGKdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ BGKdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+private:
+ T _omega; ///< relaxation parameter
+};
+
+/// Implementation of the TRT collision step
+template<typename T, typename DESCRIPTOR>
+class TRTdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ TRTdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta, T magicParameter);
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+private:
+ T _omega; ///< relaxation parameter
+ T _omega2; /// relaxation parameter for odd moments
+ T _magicParameter;
+};
+
+/// Implementation of the pressure-corrected BGK collision step
+template<typename T, typename DESCRIPTOR>
+class ConstRhoBGKdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ ConstRhoBGKdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+private:
+ T _omega; ///< relaxation parameter
+};
+
+/// Implementation of the so-called incompressible collision step
+template<typename T, typename DESCRIPTOR>
+class IncBGKdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ IncBGKdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+private:
+ T _omega; ///< relaxation parameter
+};
+
+
+
+/// Implementation of the Regularized BGK collision step
+/** This model is substantially more stable than plain BGK, and has roughly
+ * the same efficiency. However, it cuts out the modes at higher Knudsen
+ * numbers and can not be used in the regime of rarefied gases.
+ */
+template<typename T, typename DESCRIPTOR>
+class RLBdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ RLBdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+private:
+ T _omega; ///< relaxation parameter
+};
+
+/// Implementation of Regularized BGK collision, followed by any Dynamics
+template<typename T, typename DESCRIPTOR, typename Dynamics>
+class CombinedRLBdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ CombinedRLBdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Compute equilibrium distribution function
+ T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+private:
+ Dynamics _boundaryDynamics;
+};
+
+/// Implementation of the BGK collision step with external force
+template<typename T, typename DESCRIPTOR>
+class ForcedBGKdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ ForcedBGKdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Compute fluid velocity on the cell.
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Compute fluid velocity and particle density on the cell.
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+protected:
+ T _omega; ///< relaxation parameter
+};
+
+/// Implementation of the BGK collision step with external force
+template<typename T, typename DESCRIPTOR>
+class ForcedKupershtokhBGKdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ ForcedKupershtokhBGKdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Compute fluid velocity on the cell.
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Compute fluid velocity and particle density on the cell.
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+protected:
+ T _omega; ///< relaxation parameter
+};
+
+// no momenta call, thus implement all function from BasicDynamics
+template<typename T, typename DESCRIPTOR>
+class PoissonDynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ PoissonDynamics(T omega, Momenta<T,DESCRIPTOR>& momenta, T sink);
+ // TODO AM zerothOrderEquilibrium in lbHelpers
+ T computeEquilibrium( int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr ) const override;
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ void computeU(Cell<T,DESCRIPTOR> const& cell, T u[DESCRIPTOR::d]) const override;
+ void computeJ(Cell<T,DESCRIPTOR> const& cell, T j[DESCRIPTOR::d]) const override;
+ void computeStress(Cell<T,DESCRIPTOR> const& cell, T rho,
+ const T u[DESCRIPTOR::d], T pi[util::TensorVal<DESCRIPTOR>::n] ) const override;
+ void computeRhoU( Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ void computeAllMomenta( Cell<T,DESCRIPTOR> const& cell, T &rho,
+ T u[DESCRIPTOR::q], T pi[util::TensorVal<DESCRIPTOR>::n] ) const override;
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ T getOmega() const override;
+ void setOmega(T omega) override;
+protected:
+ T _omega;
+ T _sink;
+};
+
+
+template<typename T, typename DESCRIPTOR>
+class P1Dynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ P1Dynamics(T omega, Momenta<T,DESCRIPTOR>& momenta, T absorption, T scattering);
+ // TODO AM zerothOrderEquilibrium in lbHelpers
+ T computeEquilibrium( int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr ) const override;
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ void computeU(Cell<T,DESCRIPTOR> const& cell, T u[DESCRIPTOR::d]) const override;
+ void computeJ(Cell<T,DESCRIPTOR> const& cell, T j[DESCRIPTOR::d]) const override;
+ void computeStress(Cell<T,DESCRIPTOR> const& cell, T rho,
+ const T u[DESCRIPTOR::d], T pi[util::TensorVal<DESCRIPTOR>::n] ) const override;
+ void computeRhoU( Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ void computeAllMomenta( Cell<T,DESCRIPTOR> const& cell, T &rho,
+ T u[DESCRIPTOR::q], T pi[util::TensorVal<DESCRIPTOR>::n] ) const override;
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ T getOmega() const override;
+ void setOmega(T omega) override;
+protected:
+ T _omega;
+ T _absorption;
+ T _scattering;
+};
+/// Implementation of the BGK collision step with external force
+template<typename T, typename DESCRIPTOR>
+class ResettingForcedBGKdynamics : public ForcedBGKdynamics<T,DESCRIPTOR> {
+public:
+ ResettingForcedBGKdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ inline void setForce(T force[3])
+ {
+// _frc[0] = force[0];
+// _frc[1] = force[1];
+// _frc[2] = force[2];
+ _frc[0] = 0.0;
+ _frc[1] = 0.0;
+ _frc[2] = 0.0;
+ }
+private:
+ T _frc[3];
+};
+
+/// Other Implementation of the BGK collision step with external force
+template<typename T, typename DESCRIPTOR>
+class ForcedShanChenBGKdynamics : public ForcedBGKdynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ ForcedShanChenBGKdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Compute fluid velocity on the cell.
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Compute fluid velocity and particle density on the cell.
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+};
+
+/// Implementation of the TRT collision step with external force
+template<typename T, typename DESCRIPTOR>
+class ForcedTRTdynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ ForcedTRTdynamics(T omega, Momenta<T,DESCRIPTOR>& momenta, T magicParameter);
+ /// Compute fluid velocity on the cell.
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Compute fluid velocity and particle density on the cell.
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+protected:
+ T _omega; ///< relaxation parameter
+ T _omega2; /// relaxation parameter for odd moments
+ T _magicParameter;
+};
+
+/// Implementation of the 3D D3Q13 dynamics
+/** This is (so far) the minimal existing 3D model, with only 13
+ * directions. Three different relaxation times are used to achieve
+ * asymptotic hydrodynamics, isotropy and galilean invariance.
+ */
+template<typename T, typename DESCRIPTOR>
+class D3Q13dynamics : public BasicDynamics<T,DESCRIPTOR> {
+public:
+ /// Constructor
+ D3Q13dynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
+ /// Compute equilibrium distribution function
+ T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Get local relaxation parameter of the dynamics
+ T getOmega() const override;
+ /// Set local relaxation parameter of the dynamics
+ void setOmega(T omega) override;
+private:
+ T lambda_nu; ///< first relaxation parameter
+ T lambda_nu_prime; ///< second relaxation parameter
+};
+
+/// Standard computation of velocity momenta in the bulk
+template<typename T, typename DESCRIPTOR>
+struct BulkMomenta : public Momenta<T,DESCRIPTOR> {
+ /// Compute particle density on the cell.
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ /// Compute fluid velocity on the cell.
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Compute fluid momentum on the cell.
+ void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const override;
+ /// Compute components of the stress tensor on the cell.
+ void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Compute fluid velocity and particle density on the cell.
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ /// Compute all momenta on the cell, up to second order.
+ void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Set particle density on the cell.
+ void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) override;
+ /// Set fluid velocity on the cell.
+ void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) override;
+ /// Define fluid velocity and particle density on the cell.
+ void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) override;
+ /// Define all momenta on the cell, up to second order.
+ void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) override;
+};
+
+/// Velocity is stored in external scalar (and computed e.g. in a PostProcessor)
+template<typename T, typename DESCRIPTOR>
+struct ExternalVelocityMomenta : public Momenta<T,DESCRIPTOR> {
+ /// Compute particle density on the cell.
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ /// Compute fluid velocity on the cell.
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Compute fluid momentum on the cell.
+ void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const override;
+ /// Compute components of the stress tensor on the cell.
+ void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Compute fluid velocity and particle density on the cell.
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ /// Compute all momenta on the cell, up to second order.
+ void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Set particle density on the cell.
+ void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) override;
+ /// Set fluid velocity on the cell.
+ void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) override;
+ /// Define fluid velocity and particle density on the cell.
+ void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) override;
+ /// Define all momenta on the cell, up to second order.
+ void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) override;
+};
+
+/// Implementation of "bounce-back" dynamics
+/** This is a very popular way to implement no-slip boundary conditions,
+ * because the dynamics are independent of the orientation of the boundary.
+ * It is a special case, because it implements no usual LB dynamics.
+ * For that reason, it derives directly from the class Dynamics.
+ *
+ * The code works for both 2D and 3D lattices.
+ */
+template<typename T, typename DESCRIPTOR>
+class BounceBack : public Dynamics<T,DESCRIPTOR> {
+public:
+ /// A fictitious density value on bounce-back in not fixed on nodes via this constructor.
+ BounceBack();
+ /// You may fix a fictitious density value on bounce-back nodes via this constructor.
+ BounceBack(T rho);
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Yields 1;
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ /// Yields 0;
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Yields 0;
+ void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const override;
+ /// Yields NaN
+ void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Does nothing
+ void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) override;
+ /// Does nothing
+ void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) override;
+ /// Does nothing
+ void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) override;
+ /// Does nothing
+ void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) override;
+ /// Yields NaN
+ T getOmega() const override;
+ /// Does nothing
+ void setOmega(T omega) override;
+private:
+ T _rho;
+ bool _rhoFixed;
+};
+
+/// Implementation of "bounce-back velocity" dynamics
+/** This is a very popular way to implement no-slip boundary conditions,
+ * because the dynamics are independent of the orientation of the boundary.
+ * It is a special case, because it implements no usual LB dynamics.
+ * For that reason, it derives directly from the class Dynamics. It
+ * fixes the velociy to a given velocity _u.
+ *
+ * The code works for both 2D and 3D lattices.
+ */
+template<typename T, typename DESCRIPTOR>
+class BounceBackVelocity : public Dynamics<T,DESCRIPTOR> {
+public:
+ /// A fictitious density value on bounce-back in not fixed on nodes via this constructor.
+ BounceBackVelocity(const T u[DESCRIPTOR::d]);
+ /// You may fix a fictitious density value on bounce-back nodes via this constructor.
+ BounceBackVelocity(const T rho, const T u[DESCRIPTOR::d]);
+ /// Collision step, bounce back with a fixed velocity _u
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Retuns rho (if defined else zero)
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ /// Retuns _u
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Retuns rho (if defined else zero) times _u
+ void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const override;
+ /// Yields NaN
+ void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Retuns rho (if defined else zero) and _u
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Devines the velocity rho
+ void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) override;
+ /// Devines the velocity _u
+ void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) override;
+ /// Devines rho and _u
+ void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) override;
+ /// Does nothing
+ void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) override;
+ /// Yields NaN
+ T getOmega() const override;
+ /// Does nothing
+ void setOmega(T omega) override;
+private:
+ T _rho;
+ bool _rhoFixed;
+ T _u[DESCRIPTOR::d];
+};
+
+/// Implementation of "bounce-back anti" dynamics
+/** This is a way to implement a Dirichlet rho/pressure boundary conditions,
+ * because the dynamics are independent of the orientation of the boundary.
+ * It is a special case, because it implements no usual LB dynamics.
+ * For that reason, it derives directly from the class Dynamics. It
+ * fixes the rho to a given _rho.
+ *
+ * The code works for both 2D and 3D lattices.
+ */
+template<typename T, typename DESCRIPTOR>
+class BounceBackAnti : public Dynamics<T,DESCRIPTOR> {
+public:
+ /// A fictitious density value on bounce-back in not fixed on nodes via this constructor.
+ BounceBackAnti();
+ /// You may fix a fictitious density value on bounce-back nodes via this constructor.
+ BounceBackAnti(T rho);
+ /// Collision step, bounce back with a fixed velocity _u
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Retuns rho (if defined else zero)
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ /// Retuns _u
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Retuns rho (if defined else zero) times _u
+ void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const override;
+ /// Yields NaN
+ void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Retuns rho (if defined else zero) and _u
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Devines the velocity rho
+ void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) override;
+ /// Devines the velocity _u
+ void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) override;
+ /// Devines rho and _u
+ void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) override;
+ /// Does nothing
+ void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) override;
+ /// Yields NaN
+ T getOmega() const override;
+ /// Does nothing
+ void setOmega(T omega) override;
+private:
+ T _rho;
+ bool _rhoFixed;
+ T _u[DESCRIPTOR::d];
+};
+
+
+/** Corresponds to macro Robin boundary, micro Fresnel surface
+ * Motivated by Hiorth et al. 2008; doi 10.1002/fld.1822
+ */
+template<typename T, typename DESCRIPTOR>
+class PartialBounceBack final: public BounceBack<T,DESCRIPTOR> {
+public:
+ PartialBounceBack(T rf);
+ T computeEquilibrium( int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr ) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell, LatticeStatistics<T>& statistics_) override;
+private:
+ T _rf;
+};
+
+
+/// Implementation of a "dead cell" that does nothing
+template<typename T, typename DESCRIPTOR>
+class NoDynamics : public Dynamics<T,DESCRIPTOR> {
+public:
+ /// You may fix a fictitious density value on no dynamics node via this constructor.
+ NoDynamics(T rho = T(1) );
+ /// Yields 0;
+ T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const override;
+ /// Collision step
+ void collide(Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics_) override;
+ /// Yields 1;
+ T computeRho(Cell<T,DESCRIPTOR> const& cell) const override;
+ /// Yields 0;
+ void computeU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T u[DESCRIPTOR::d] ) const override;
+ /// Yields 0;
+ void computeJ (
+ Cell<T,DESCRIPTOR> const& cell,
+ T j[DESCRIPTOR::d] ) const override;
+ /// Yields NaN
+ void computeStress (
+ Cell<T,DESCRIPTOR> const& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ void computeRhoU (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d]) const override;
+ void computeAllMomenta (
+ Cell<T,DESCRIPTOR> const& cell,
+ T& rho, T u[DESCRIPTOR::d],
+ T pi[util::TensorVal<DESCRIPTOR >::n] ) const override;
+ /// Does nothing
+ void defineRho(Cell<T,DESCRIPTOR>& cell, T rho) override;
+ /// Does nothing
+ void defineU(Cell<T,DESCRIPTOR>& cell,
+ const T u[DESCRIPTOR::d]) override;
+ /// Does nothing
+ void defineRhoU (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d]) override;
+ /// Does nothing
+ void defineAllMomenta (
+ Cell<T,DESCRIPTOR>& cell,
+ T rho, const T u[DESCRIPTOR::d],
+ const T pi[util::TensorVal<DESCRIPTOR >::n] ) override;
+ /// Yields NaN
+ T getOmega() const override;
+ /// Does nothing
+ void setOmega(T omega) override;