summaryrefslogtreecommitdiff
path: root/src/dynamics/navierStokesAdvectionDiffusionCouplingPostProcessor2D.hh
diff options
context:
space:
mode:
authorAdrian Kummerlaender2019-06-24 14:43:36 +0200
committerAdrian Kummerlaender2019-06-24 14:43:36 +0200
commit94d3e79a8617f88dc0219cfdeedfa3147833719d (patch)
treec1a6894679563e271f5c6ea7a17fa3462f7212a3 /src/dynamics/navierStokesAdvectionDiffusionCouplingPostProcessor2D.hh
downloadgrid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.gz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.bz2
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.lz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.xz
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.tar.zst
grid_refinement_openlb-94d3e79a8617f88dc0219cfdeedfa3147833719d.zip
Initialize at openlb-1-3
Diffstat (limited to 'src/dynamics/navierStokesAdvectionDiffusionCouplingPostProcessor2D.hh')
-rw-r--r--src/dynamics/navierStokesAdvectionDiffusionCouplingPostProcessor2D.hh417
1 files changed, 417 insertions, 0 deletions
diff --git a/src/dynamics/navierStokesAdvectionDiffusionCouplingPostProcessor2D.hh b/src/dynamics/navierStokesAdvectionDiffusionCouplingPostProcessor2D.hh
new file mode 100644
index 0000000..90867bc
--- /dev/null
+++ b/src/dynamics/navierStokesAdvectionDiffusionCouplingPostProcessor2D.hh
@@ -0,0 +1,417 @@
+/* This file is part of the OpenLB library
+ *
+ * Copyright (C) 2008 Orestis Malaspinas, Andrea Parmigiani, Jonas Latt
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+#ifndef NAVIER_STOKES_ADVECTION_DIFFUSION_COUPLING_POST_PROCESSOR_2D_HH
+#define NAVIER_STOKES_ADVECTION_DIFFUSION_COUPLING_POST_PROCESSOR_2D_HH
+
+#include "latticeDescriptors.h"
+#include "navierStokesAdvectionDiffusionCouplingPostProcessor2D.h"
+#include "core/blockLattice2D.h"
+#include "core/util.h"
+#include "core/finiteDifference2D.h"
+
+using namespace std;
+
+namespace olb {
+
+//=====================================================================================
+//============== NavierStokesAdvectionDiffusionCouplingPostProcessor2D ===============
+//=====================================================================================
+
+template<typename T, typename DESCRIPTOR>
+NavierStokesAdvectionDiffusionCouplingPostProcessor2D<T,DESCRIPTOR>::
+NavierStokesAdvectionDiffusionCouplingPostProcessor2D(int x0_, int x1_, int y0_, int y1_,
+ T gravity_, T T0_, T deltaTemp_, std::vector<T> dir_,
+ std::vector<SpatiallyExtendedObject2D* > partners_)
+ : x0(x0_), x1(x1_), y0(y0_), y1(y1_),
+ gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_),
+ dir(dir_), partners(partners_)
+{
+ // we normalize the direction of force vector
+ T normDir = T();
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ normDir += dir[iD]*dir[iD];
+ }
+ normDir = sqrt(normDir);
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ dir[iD] /= normDir;
+ }
+
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ forcePrefactor[iD] = gravity * dir[iD];
+ }
+
+ tPartner = dynamic_cast<BlockLattice2D<T,descriptors::D2Q5<descriptors::VELOCITY>> *>(partners[0]);
+}
+
+template<typename T, typename DESCRIPTOR>
+void NavierStokesAdvectionDiffusionCouplingPostProcessor2D<T,DESCRIPTOR>::
+processSubDomain(BlockLattice2D<T,DESCRIPTOR>& blockLattice,
+ int x0_, int x1_, int y0_, int y1_)
+{
+
+ int newX0, newX1, newY0, newY1;
+ if ( util::intersect (
+ x0, x1, y0, y1,
+ x0_, x1_, y0_, y1_,
+ newX0, newX1, newY0, newY1 ) ) {
+
+ for (int iX=newX0; iX<=newX1; ++iX) {
+ for (int iY=newY0; iY<=newY1; ++iY) {
+ // computation of the bousinessq force
+ T *force = blockLattice.get(iX,iY).template getFieldPointer<descriptors::FORCE>();
+ T temperatureDifference = tPartner->get(iX,iY).computeRho() - T0;
+ for (unsigned iD = 0; iD < L::d; ++iD) {
+ force[iD] = forcePrefactor[iD] * temperatureDifference;
+ }
+ // Velocity coupling
+ T *u = tPartner->get(iX,iY).template getFieldPointer<descriptors::VELOCITY>();
+ blockLattice.get(iX,iY).computeU(u);
+ }
+ }
+ }
+}
+
+template<typename T, typename DESCRIPTOR>
+void NavierStokesAdvectionDiffusionCouplingPostProcessor2D<T,DESCRIPTOR>::
+process(BlockLattice2D<T,DESCRIPTOR>& blockLattice)
+{
+ processSubDomain(blockLattice, x0, x1, y0, y1);
+}
+
+/// LatticeCouplingGenerator for advectionDiffusion coupling
+
+template<typename T, typename DESCRIPTOR>
+NavierStokesAdvectionDiffusionCouplingGenerator2D<T,DESCRIPTOR>::
+NavierStokesAdvectionDiffusionCouplingGenerator2D(int x0_, int x1_, int y0_, int y1_,
+ T gravity_, T T0_, T deltaTemp_, std::vector<T> dir_)
+ : LatticeCouplingGenerator2D<T,DESCRIPTOR>(x0_, x1_, y0_, y1_),
+ gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_), dir(dir_)
+{ }
+
+template<typename T, typename DESCRIPTOR>
+PostProcessor2D<T,DESCRIPTOR>* NavierStokesAdvectionDiffusionCouplingGenerator2D<T,DESCRIPTOR>::generate (
+ std::vector<SpatiallyExtendedObject2D* > partners) const
+{
+ return new NavierStokesAdvectionDiffusionCouplingPostProcessor2D<T,DESCRIPTOR>(
+ this->x0,this->x1,this->y0,this->y1, gravity, T0, deltaTemp, dir,partners);
+}
+
+template<typename T, typename DESCRIPTOR>
+LatticeCouplingGenerator2D<T,DESCRIPTOR>* NavierStokesAdvectionDiffusionCouplingGenerator2D<T,DESCRIPTOR>::clone() const
+{
+ return new NavierStokesAdvectionDiffusionCouplingGenerator2D<T,DESCRIPTOR>(*this);
+}
+
+
+//=====================================================================================
+//============== SmagorinskyBoussinesqCouplingPostProcessor2D ===============
+//=====================================================================================
+
+template<typename T, typename DESCRIPTOR>
+SmagorinskyBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>::
+SmagorinskyBoussinesqCouplingPostProcessor2D(int x0_, int x1_, int y0_, int y1_,
+ T gravity_, T T0_, T deltaTemp_, std::vector<T> dir_, T PrTurb_,
+ std::vector<SpatiallyExtendedObject2D* > partners_)
+ : x0(x0_), x1(x1_), y0(y0_), y1(y1_),
+ gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_),
+ dir(dir_), PrTurb(PrTurb_), partners(partners_)
+{
+ // we normalize the direction of force vector
+ T normDir = T();
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ normDir += dir[iD]*dir[iD];
+ }
+ normDir = sqrt(normDir);
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ dir[iD] /= normDir;
+ }
+
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ forcePrefactor[iD] = gravity * dir[iD];
+ }
+
+ tauTurbADPrefactor = descriptors::invCs2<T,descriptors::D2Q5<descriptors::VELOCITY,descriptors::TAU_EFF>>() / descriptors::invCs2<T,DESCRIPTOR>() / PrTurb;
+ tPartner = dynamic_cast<BlockLattice2D<T,descriptors::D2Q5<descriptors::VELOCITY,descriptors::TAU_EFF>> *>(partners[0]);
+}
+
+template<typename T, typename DESCRIPTOR>
+void SmagorinskyBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>::
+processSubDomain(BlockLattice2D<T,DESCRIPTOR>& blockLattice,
+ int x0_, int x1_, int y0_, int y1_)
+{
+
+ int newX0, newX1, newY0, newY1;
+ if ( util::intersect (
+ x0, x1, y0, y1,
+ x0_, x1_, y0_, y1_,
+ newX0, newX1, newY0, newY1 ) ) {
+
+ for (int iX=newX0; iX<=newX1; ++iX) {
+ for (int iY=newY0; iY<=newY1; ++iY) {
+
+ // computation of the bousinessq force
+ T *force = blockLattice.get(iX,iY).template getFieldPointer<descriptors::FORCE>();
+ T temperatureDifference = tPartner->get(iX,iY).computeRho() - T0;
+ for (unsigned iD = 0; iD < L::d; ++iD) {
+ force[iD] = forcePrefactor[iD] * temperatureDifference;
+ }
+
+ // Velocity coupling
+ T *u = tPartner->get(iX,iY).template getFieldPointer<descriptors::VELOCITY>();
+
+ // tau coupling
+ T *tauNS = blockLattice.get(iX,iY).template getFieldPointer<descriptors::TAU_EFF>();
+ T *tauAD = tPartner->get(iX,iY).template getFieldPointer<descriptors::TAU_EFF>();
+
+ T rho, pi[util::TensorVal<DESCRIPTOR >::n];
+ blockLattice.get(iX,iY).computeAllMomenta(rho, u, pi);
+ T PiNeqNormSqr = pi[0]*pi[0] + 2.0*pi[1]*pi[1] + pi[2]*pi[2];
+ if (util::TensorVal<DESCRIPTOR >::n == 6) {
+ PiNeqNormSqr += pi[2]*pi[2] + pi[3]*pi[3] + 2*pi[4]*pi[4] +pi[5]*pi[5];
+ }
+ T PiNeqNorm = sqrt(PiNeqNormSqr);
+ /// Molecular realaxation time
+ T tau_mol_NS = 1. / blockLattice.get(iX,iY).getDynamics()->getOmega();
+ T tau_mol_AD = 1. / tPartner->get(iX,iY).getDynamics()->getOmega();
+ /// Turbulent realaxation time
+ T tau_turb_NS = 0.5*(sqrt(tau_mol_NS*tau_mol_NS + dynamic_cast<SmagorinskyDynamics<T,DESCRIPTOR>*>(blockLattice.get(iX,iY).getDynamics())->getPreFactor()/rho*PiNeqNorm) - tau_mol_NS);
+ /// Effective realaxation time
+ tauNS[0] = tau_mol_NS+tau_turb_NS;
+
+ T tau_turb_AD = tau_turb_NS * tauTurbADPrefactor;
+ tauAD[0] = tau_mol_AD+tau_turb_AD;
+ }
+ }
+ }
+
+}
+
+template<typename T, typename DESCRIPTOR>
+void SmagorinskyBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>::
+process(BlockLattice2D<T,DESCRIPTOR>& blockLattice)
+{
+ processSubDomain(blockLattice, x0, x1, y0, y1);
+}
+
+/// LatticeCouplingGenerator for advectionDiffusion coupling
+
+template<typename T, typename DESCRIPTOR>
+SmagorinskyBoussinesqCouplingGenerator2D<T,DESCRIPTOR>::
+SmagorinskyBoussinesqCouplingGenerator2D(int x0_, int x1_, int y0_, int y1_,
+ T gravity_, T T0_, T deltaTemp_, std::vector<T> dir_, T PrTurb_)
+ : LatticeCouplingGenerator2D<T,DESCRIPTOR>(x0_, x1_, y0_, y1_),
+ gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_), dir(dir_), PrTurb(PrTurb_)
+{ }
+
+template<typename T, typename DESCRIPTOR>
+PostProcessor2D<T,DESCRIPTOR>* SmagorinskyBoussinesqCouplingGenerator2D<T,DESCRIPTOR>::generate (
+ std::vector<SpatiallyExtendedObject2D* > partners) const
+{
+ return new SmagorinskyBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>(
+ this->x0,this->x1,this->y0,this->y1, gravity, T0, deltaTemp, dir, PrTurb, partners);
+}
+
+template<typename T, typename DESCRIPTOR>
+LatticeCouplingGenerator2D<T,DESCRIPTOR>* SmagorinskyBoussinesqCouplingGenerator2D<T,DESCRIPTOR>::clone() const
+{
+ return new SmagorinskyBoussinesqCouplingGenerator2D<T,DESCRIPTOR>(*this);
+}
+
+
+//=====================================================================================
+//============== MixedScaleBoussinesqCouplingPostProcessor2D ===============
+//=====================================================================================
+
+template<typename T, typename DESCRIPTOR>
+MixedScaleBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>::
+MixedScaleBoussinesqCouplingPostProcessor2D(int x0_, int x1_, int y0_, int y1_,
+ T gravity_, T T0_, T deltaTemp_, std::vector<T> dir_, T PrTurb_,
+ std::vector<SpatiallyExtendedObject2D* > partners_)
+ : x0(x0_), x1(x1_), y0(y0_), y1(y1_),
+ gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_),
+ dir(dir_), PrTurb(PrTurb_), partners(partners_)
+{
+ // we normalize the direction of force vector
+ T normDir = T();
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ normDir += dir[iD]*dir[iD];
+ }
+ normDir = sqrt(normDir);
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ dir[iD] /= normDir;
+ }
+
+ for (unsigned iD = 0; iD < dir.size(); ++iD) {
+ forcePrefactor[iD] = gravity * dir[iD];
+ }
+
+ tauTurbADPrefactor = descriptors::invCs2<T,descriptors::D2Q5<descriptors::VELOCITY,descriptors::TAU_EFF,descriptors::CUTOFF_HEAT_FLUX>>() / descriptors::invCs2<T,DESCRIPTOR>() / PrTurb;
+ tPartner = dynamic_cast<BlockLattice2D<T,descriptors::D2Q5<descriptors::VELOCITY,descriptors::TAU_EFF,descriptors::CUTOFF_HEAT_FLUX>> *>(partners[0]);
+}
+
+template<typename T, typename DESCRIPTOR>
+void MixedScaleBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>::
+processSubDomain(BlockLattice2D<T,DESCRIPTOR>& blockLattice,
+ int x0_, int x1_, int y0_, int y1_)
+{
+
+ const T C_nu = 0.04;
+ const T C_alpha = 0.5;
+ const T deltaT = 1.0;
+
+ const T invCs2_g = descriptors::invCs2<T,descriptors::D2Q5<descriptors::VELOCITY,descriptors::TAU_EFF,descriptors::CUTOFF_HEAT_FLUX>>();
+
+ int newX0, newX1, newY0, newY1;
+ if ( util::intersect (
+ x0, x1, y0, y1,
+ x0_, x1_, y0_, y1_,
+ newX0, newX1, newY0, newY1 ) ) {
+
+ for (int iX=newX0; iX<=newX1; ++iX) {
+ for (int iY=newY0; iY<=newY1; ++iY) {
+ T *cutoffKinEnergy_14 = blockLattice.get(iX, iY).template getFieldPointer<descriptors::CUTOFF_KIN_ENERGY>();
+ T *cutoffHeatFlux_14 = tPartner->get(iX, iY).template getFieldPointer<descriptors::CUTOFF_HEAT_FLUX>();
+
+ // Velocity coupling
+ T *u = tPartner->get(iX,iY).template getFieldPointer<descriptors::VELOCITY>();
+
+ // tau coupling
+ T *tauNS = blockLattice.get(iX,iY).template getFieldPointer<descriptors::TAU_EFF>();
+ T *tauAD = tPartner->get(iX,iY).template getFieldPointer<descriptors::TAU_EFF>();
+
+ /// Molecular realaxation time
+ T tau_mol_NS = 1. / blockLattice.get(iX,iY).getDynamics()->getOmega();
+ T tau_mol_AD = 1. / tPartner->get(iX,iY).getDynamics()->getOmega();
+
+ const T temperature = tPartner->get(iX,iY).computeRho();
+
+ // computation of the bousinessq force
+ T *force = blockLattice.get(iX,iY).template getFieldPointer<descriptors::FORCE>();
+ T temperatureDifference = temperature - T0;
+ for (unsigned iD = 0; iD < L::d; ++iD) {
+ force[iD] = forcePrefactor[iD] * temperatureDifference;
+ }
+
+ T rho, pi[util::TensorVal<DESCRIPTOR>::n], j[DESCRIPTOR::d];
+ blockLattice.get(iX,iY).computeAllMomenta(rho, u, pi);
+
+ int iPi = 0;
+ for (int Alpha=0; Alpha<DESCRIPTOR::d; ++Alpha) {
+ for (int Beta=Alpha; Beta<DESCRIPTOR::d; ++Beta) {
+ pi[iPi] += rho/2.*(force[Alpha]*u[Beta] + u[Alpha]*force[Beta]);
+ ++iPi;
+ }
+ }
+ const T piSqr[3] = {pi[0]*pi[0], pi[1]*pi[1], pi[2]*pi[2]};
+ const T PiNeqNormSqr = piSqr[0] + 2.0*piSqr[1] + piSqr[2];
+ const T PiNeqNorm = sqrt(PiNeqNormSqr);
+
+ tPartner->get(iX,iY).computeJ(j);
+ const T tmp_preFactor = invCs2_g / rho / tauAD[0];
+ const T jNeq[2] = {(j[0] - temperature * u[0]), (j[1] - temperature * u[1])};
+ const T jNeqSqr[2] = {jNeq[0]*jNeq[0], jNeq[1]*jNeq[1]};
+ const T jNeqSqr_prefacor = 2. * 0.25 * (jNeq[0] + jNeq[1]) * (jNeq[0] + jNeq[1]);
+
+ const T TnormSqr = jNeqSqr_prefacor*PiNeqNormSqr;
+ const T Tnorm = sqrt(TnormSqr);
+
+ /// Turbulent realaxation time
+ // T tau_turb_NS = 0.5*(sqrt(tau_mol_NS*tau_mol_NS + dynamic_cast<SmagorinskyDynamics<T,DESCRIPTOR>*>(blockLattice.get(iX,iY).getDynamics())->getPreFactor()/rho*PiNeqNorm) - tau_mol_NS);
+
+ // const T tmp_A = C_nu * sqrt(sqrt(2.)/2.) * descriptors::invCs2<T,DESCRIPTOR>() * descriptors::invCs2<T,DESCRIPTOR>() * sqrt(PiNeqNorm / rho) * cutoffKinEnergy_14[0];
+ // const T tmp_A_2 = tmp_A * tmp_A;
+ // const T tmp_A_4 = tmp_A_2 * tmp_A_2;
+
+ // const T tau_mol_NS_2 = tau_mol_NS * tau_mol_NS;
+ // const T tau_mol_NS_3 = tau_mol_NS_2 * tau_mol_NS;
+
+ // const T tmp_1_3 = 1./3.;
+ // const T tmp_2_13 = pow(2., tmp_1_3);
+ // const T tmp_3_3_12 = 3. * sqrt(3.);
+
+ // const T tmp_sqrtA = sqrt(27.*tmp_A_4-4.*tmp_A_2*tau_mol_NS_3);
+
+ // // T tau_turb_NS = 1/3 ((27 A^2 + 3 sqrt(3) sqrt(27 A^4 - 4 A^2 b^3) - 2 b^3)^(1/3)/2^(1/3) + (2^(1/3) b^2)/(27 A^2 + 3 sqrt(3) sqrt(27 A^4 - 4 A^2 b^3) - 2 b^3)^(1/3) - b)
+ // T tau_turb_NS = ( pow(27.*tmp_A_2 + tmp_3_3_12*sqrt(27.*tmp_A_4-4.*tmp_A_2*tau_mol_NS_3)-2.*tau_mol_NS_3, tmp_1_3) / tmp_2_13
+ // + (tmp_2_13*tau_mol_NS_2) / pow(27.*tmp_A_2+tmp_3_3_12*sqrt(27.*tmp_A_4-4.*tmp_A_2*tau_mol_NS_3) - 2.*tau_mol_NS_3, tmp_1_3)
+ // - tau_mol_NS
+ // ) * tmp_1_3;
+
+ // if ( tau_turb_NS != tau_turb_NS )
+ // tau_turb_NS = 0.;
+
+ //cout << tau_turb_NS << " " << 27. * tmp_A_2 << " " << 4. * tau_mol_NS_3 << " " << PiNeqNorm << " " << " " << rho << endl;
+
+ const T tmp_A = C_nu * sqrt(sqrt(2.)/2.) * descriptors::invCs2<T,DESCRIPTOR>() * descriptors::invCs2<T,DESCRIPTOR>() * sqrt(PiNeqNorm / rho / tauNS[0]) * cutoffKinEnergy_14[0];
+ const T tau_turb_NS = tmp_A;
+
+ // T tau_turb_AD = tau_turb_NS * tauTurbADPrefactor;
+ const T tmp_B = C_alpha * descriptors::invCs2<T,DESCRIPTOR>() / rho * sqrt(2.0 * Tnorm * invCs2_g / tauNS[0] / tauAD[0]) * cutoffHeatFlux_14[0];
+ const T tau_turb_AD = tmp_B;
+ // cout << jNeq[0] << " " << jNeq[1] << " " << sqrt(Tnorm * invCs2_g / tauNS[0] / tauAD[0]) << " " << TnormSqr << endl;
+
+ /// Effective realaxation time
+ tauNS[0] = tau_mol_NS+tau_turb_NS;
+ tauAD[0] = tau_mol_AD+tau_turb_AD;
+
+ }
+ }
+ }
+
+}
+
+template<typename T, typename DESCRIPTOR>
+void MixedScaleBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>::
+process(BlockLattice2D<T,DESCRIPTOR>& blockLattice)
+{
+ processSubDomain(blockLattice, x0, x1, y0, y1);
+}
+
+/// LatticeCouplingGenerator for advectionDiffusion coupling
+
+template<typename T, typename DESCRIPTOR>
+MixedScaleBoussinesqCouplingGenerator2D<T,DESCRIPTOR>::
+MixedScaleBoussinesqCouplingGenerator2D(int x0_, int x1_, int y0_, int y1_,
+ T gravity_, T T0_, T deltaTemp_, std::vector<T> dir_, T PrTurb_)
+ : LatticeCouplingGenerator2D<T,DESCRIPTOR>(x0_, x1_, y0_, y1_),
+ gravity(gravity_), T0(T0_), deltaTemp(deltaTemp_), dir(dir_), PrTurb(PrTurb_)
+{ }
+
+template<typename T, typename DESCRIPTOR>
+PostProcessor2D<T,DESCRIPTOR>* MixedScaleBoussinesqCouplingGenerator2D<T,DESCRIPTOR>::generate (
+ std::vector<SpatiallyExtendedObject2D* > partners) const
+{
+ return new MixedScaleBoussinesqCouplingPostProcessor2D<T,DESCRIPTOR>(
+ this->x0,this->x1,this->y0,this->y1, gravity, T0, deltaTemp, dir, PrTurb, partners);
+}
+
+template<typename T, typename DESCRIPTOR>
+LatticeCouplingGenerator2D<T,DESCRIPTOR>* MixedScaleBoussinesqCouplingGenerator2D<T,DESCRIPTOR>::clone() const
+{
+ return new MixedScaleBoussinesqCouplingGenerator2D<T,DESCRIPTOR>(*this);
+}
+
+} // namespace olb
+
+#endif