diff options
Diffstat (limited to 'apps/adrian/cylinder2d/outflow_refinement')
-rw-r--r-- | apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp | 259 |
1 files changed, 33 insertions, 226 deletions
diff --git a/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp index f1e6fa9..5a6725b 100644 --- a/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp +++ b/apps/adrian/cylinder2d/outflow_refinement/cylinder2d.cpp @@ -28,8 +28,6 @@ #include "olb2D.hh" #endif -#include <vector> - using namespace olb; typedef double T; @@ -39,243 +37,29 @@ typedef double T; /// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96] const T cylinderD = 0.1; const int N = 5; // resolution of the cylinder -const T deltaR = cylinderD / N; // coarse lattice spacing -const T lx = 22*cylinderD + deltaR; // length of the channel -const T ly = 4.1*cylinderD + deltaR; // height of the channel -const T cylinderX = 2*cylinderD; -const T cylinderY = 2*cylinderD + deltaR/2; const T Re = 100.; // Reynolds number const T tau = 0.51; // relaxation time const T maxPhysT = 16.; // max. simulation time in s, SI unit const Characteristics<T> PhysCharacteristics( - 0.1, // char. phys. length + cylinderD, // char. phys. length 1.0, // char. phys. velocity 0.1/Re, // phsy. kinematic viscosity 1.0); // char. phys. density -void prepareGeometry(Grid2D<T,DESCRIPTOR>& grid, Vector<T,2> origin, Vector<T,2> extend) -{ - OstreamManager clout(std::cout,"prepareGeometry"); - clout << "Prepare Geometry ..." << std::endl; - - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - - sGeometry.rename(0,1); - - const T physSpacing = converter.getPhysDeltaX(); - - // Set material number for channel walls - { - const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; - const Vector<T,2> wallOrigin = origin - physSpacing/4; - - IndicatorCuboid2D<T> lowerWall(wallExtend, wallOrigin); - sGeometry.rename(1,2,lowerWall); - } - { - const Vector<T,2> wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; - const Vector<T,2> wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 }; - - IndicatorCuboid2D<T> upperWall(wallExtend, wallOrigin); - sGeometry.rename(1,2,upperWall); - } - - // Set material number for inflow and outflow - { - const Vector<T,2> inflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; - const Vector<T,2> inflowOrigin = origin - physSpacing/4; - - IndicatorCuboid2D<T> inflow(inflowExtend, inflowOrigin); - sGeometry.rename(1,3,inflow); - } - { - const Vector<T,2> outflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; - const Vector<T,2> outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 }; - - IndicatorCuboid2D<T> outflow(outflowExtend, outflowOrigin); - sGeometry.rename(1,4,outflow); - } - - // Set material number for vertically centered cylinder - { - const Vector<T,2> cylinderOrigin = origin + Vector<T,2> {cylinderX, cylinderY}; - IndicatorCircle2D<T> obstacle(cylinderOrigin, cylinderD/2); - sGeometry.rename(1,5,obstacle); - } - - sGeometry.clean(); - sGeometry.innerClean(); - sGeometry.checkForErrors(); - - clout << "Prepare Geometry ... OK" << std::endl; -} - -void disableRefinedArea(Grid2D<T,DESCRIPTOR>& coarseGrid, - RefiningGrid2D<T,DESCRIPTOR>& fineGrid) -{ - auto& sGeometry = coarseGrid.getSuperGeometry(); - auto refinedOverlap = fineGrid.getRefinedOverlap(); - sGeometry.reset(*refinedOverlap); -} - -void prepareLattice(Grid2D<T,DESCRIPTOR>& grid) -{ - OstreamManager clout(std::cout,"prepareLattice"); - clout << "Prepare lattice ..." << std::endl; - - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - auto& sLattice = grid.getSuperLattice(); - - Dynamics<T,DESCRIPTOR>& bulkDynamics = grid.addDynamics( - std::unique_ptr<Dynamics<T,DESCRIPTOR>>( - new BGKdynamics<T,DESCRIPTOR>( - grid.getConverter().getLatticeRelaxationFrequency(), - instances::getBulkMomenta<T,DESCRIPTOR>()))); - - sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); - //createInterpBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition); - createLocalBoundaryCondition2D<T,DESCRIPTOR>(sBoundaryCondition); - - const T omega = converter.getLatticeRelaxationFrequency(); - - sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>()); - sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk - sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls - sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow - sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow - sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack<T,DESCRIPTOR>()); // cylinder - - sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); - sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); - sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); - - AnalyticalConst2D<T,T> rho0(1.0); - AnalyticalConst2D<T,T> u0(0.0, 0.0); - - auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4}); - sLattice.defineRhoU(materials, rho0, u0); - sLattice.iniEquilibrium(materials, rho0, u0); - - sLattice.initialize(); - - clout << "Prepare lattice ... OK" << std::endl; - sGeometry.print(); -} - -void setBoundaryValues(Grid2D<T,DESCRIPTOR>& grid, int iT) -{ - auto& converter = grid.getConverter(); - auto& sGeometry = grid.getSuperGeometry(); - auto& sLattice = grid.getSuperLattice(); - - const int iTmaxStart = converter.getLatticeTime(0.4*16); - const int iTupdate = 5; - - if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { - PolynomialStartScale<T,T> StartScale(iTmaxStart, 1); - - T iTvec[1] { T(iT) }; - T frac[1] { }; - StartScale(frac, iTvec); - - const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0]; - Poiseuille2D<T> u(sGeometry, 3, maxVelocity, deltaR/2); - - sLattice.defineU(sGeometry, 3, u); - } -} - -void getResults(Grid2D<T,DESCRIPTOR>& grid, - const std::string& prefix, - int iT) -{ - auto& converter = grid.getConverter(); - auto& sLattice = grid.getSuperLattice(); - auto& sGeometry = grid.getSuperGeometry(); - - SuperVTMwriter2D<T> vtmWriter(prefix); - SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity(sLattice, converter); - SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); - SuperLatticeGeometry2D<T,DESCRIPTOR> geometry(sLattice, sGeometry); - SuperLatticeKnudsen2D<T,DESCRIPTOR> knudsen(sLattice); - vtmWriter.addFunctor(geometry); - vtmWriter.addFunctor(velocity); - vtmWriter.addFunctor(pressure); - vtmWriter.addFunctor(knudsen); - - if (iT==0) { - vtmWriter.createMasterFile(); - } +#include "../common/model.h" - vtmWriter.write(iT); -} - -void takeMeasurements(Grid2D<T,DESCRIPTOR>& grid) +void setupRefinement(Grid2D<T,DESCRIPTOR>& coarseGrid, + Vector<T,2> domainOrigin, Vector<T,2> domainExtend) { - static T maxDrag = 0.0; - - OstreamManager clout(std::cout,"measurement"); - - auto& sLattice = grid.getSuperLattice(); - auto& sGeometry = grid.getSuperGeometry(); - auto& converter = grid.getConverter(); - - SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure(sLattice, converter); - AnalyticalFfromSuperF2D<T> intpolatePressure(pressure, true); - SuperLatticePhysDrag2D<T,DESCRIPTOR> dragF(sLattice, sGeometry, 5, converter); - - const T radiusCylinder = cylinderD/2; - - const T point1[2] { cylinderX - radiusCylinder, cylinderY }; - const T point2[2] { cylinderX + radiusCylinder, cylinderY }; - - T pressureInFrontOfCylinder, pressureBehindCylinder; - intpolatePressure(&pressureInFrontOfCylinder, point1); - intpolatePressure(&pressureBehindCylinder, point2); - - T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder; - clout << "pressureDrop=" << pressureDrop; - - const int input[3] {}; - T drag[dragF.getTargetDim()] {}; - dragF(drag, input); - if (drag[0] > maxDrag) { - maxDrag = drag[0]; - }; - clout << "; drag=" << drag[0] << "; maxDrag: " << maxDrag << "; lift=" << drag[1] << endl; -} - -int main(int argc, char* argv[]) -{ - olbInit(&argc, &argv); - singleton::directories().setOutputDir("./tmp/"); - OstreamManager clout(std::cout,"main"); - - const Vector<T,2> coarseOrigin {0.0, 0.0}; - const Vector<T,2> coarseExtend {lx, ly}; - IndicatorCuboid2D<T> coarseCuboid(coarseExtend, coarseOrigin); - - Grid2D<T,DESCRIPTOR> coarseGrid( - coarseCuboid, - RelaxationTime<T>(tau), - N, - PhysCharacteristics); - const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); - const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); - - prepareGeometry(coarseGrid, domainOrigin, domainExtend); - const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); const Vector<T,2> fineOutflowExtend {1*cylinderD, domainExtend[1]}; const Vector<T,2> fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0}; auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false); - prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); { const Vector<T,2> origin = fineOutflowGrid.getOrigin(); @@ -294,7 +78,7 @@ int main(int argc, char* argv[]) const Vector<T,2> fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0}; auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false); - prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); + SchaeferTurek::prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); { const Vector<T,2> origin = fineOutflowGrid2.getOrigin(); @@ -308,8 +92,29 @@ int main(int argc, char* argv[]) IndicatorCuboid2D<T> refined(extend, origin + Vector<T,2> {coarseDeltaX,0}); fineOutflowGrid.getSuperGeometry().reset(refined); } +} + +int main(int argc, char* argv[]) +{ + olbInit(&argc, &argv); + singleton::directories().setOutputDir("./tmp/"); + OstreamManager clout(std::cout,"main"); - coarseGrid.forEachGrid(prepareLattice); + IndicatorCuboid2D<T> coarseCuboid(SchaeferTurek::modelExtend, SchaeferTurek::modelOrigin); + + Grid2D<T,DESCRIPTOR> coarseGrid( + coarseCuboid, + RelaxationTime<T>(tau), + N, + PhysCharacteristics); + const Vector<T,2> domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); + const Vector<T,2> domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); + + SchaeferTurek::prepareGeometry(coarseGrid, domainOrigin, domainExtend); + + setupRefinement(coarseGrid, domainOrigin, domainExtend); + + coarseGrid.forEachGrid(SchaeferTurek::prepareLattice); clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl; clout << "Starting simulation..." << endl; @@ -320,8 +125,10 @@ int main(int argc, char* argv[]) coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); timer.start(); + Grid2D<T,DESCRIPTOR>& cylinderGrid = coarseGrid.locate(SchaeferTurek::cylinderCenter); + for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { - setBoundaryValues(coarseGrid, iT); + SchaeferTurek::setBoundaryValues(coarseGrid, iT); coarseGrid.collideAndStream(); @@ -330,10 +137,10 @@ int main(int argc, char* argv[]) timer.printStep(); coarseGrid.forEachGrid("cylinder2d", [&](Grid2D<T,DESCRIPTOR>& grid, const std::string& id) { - getResults(grid, id, iT); + SchaeferTurek::getResults(grid, id, iT); }); - takeMeasurements(coarseGrid); + SchaeferTurek::takeMeasurements(cylinderGrid, iT); } } |