summaryrefslogtreecommitdiff
path: root/examples/laminar/cavity2d/sequential/cavity2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/laminar/cavity2d/sequential/cavity2d.cpp')
-rw-r--r--examples/laminar/cavity2d/sequential/cavity2d.cpp230
1 files changed, 230 insertions, 0 deletions
diff --git a/examples/laminar/cavity2d/sequential/cavity2d.cpp b/examples/laminar/cavity2d/sequential/cavity2d.cpp
new file mode 100644
index 0000000..c31433e
--- /dev/null
+++ b/examples/laminar/cavity2d/sequential/cavity2d.cpp
@@ -0,0 +1,230 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2006 - 2012 Mathias J. Krause, Jonas Fietz,
+ * Jonas Latt, Jonas Kratzke
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* cavity2d.cpp:
+ * This example illustrates a flow in a cuboid, lid-driven cavity.
+ * It also shows how to use the XML parameter files and has an
+ * example description file for OpenGPI. This version is for sequential
+ * use. A version for parallel use is also available.
+ */
+
+
+#include "olb2D.h"
+#ifndef OLB_PRECOMPILED // Unless precompiled version is used,
+#include "olb2D.hh" // include full template code
+#endif
+#include <cmath>
+#include <iostream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace olb::util;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D2Q9<>
+
+void prepareLattice( UnitConverter<T,DESCRIPTOR> const& converter,
+ BlockLatticeStructure2D<T,DESCRIPTOR>& lattice,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ OnLatticeBoundaryCondition2D<T,DESCRIPTOR>& bc ) {
+
+ const int nx = lattice.getNx();
+ const int ny = lattice.getNy();
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ // link lattice with dynamics for collision step
+ lattice.defineDynamics( 0,nx-1, 0,ny-1, &bulkDynamics );
+
+ // left boundary
+ bc.addVelocityBoundary0N( 0, 0, 1,ny-2, omega );
+ // right boundary
+ bc.addVelocityBoundary0P( nx-1,nx-1, 1,ny-2, omega );
+ // bottom boundary
+ bc.addVelocityBoundary1N( 1,nx-2, 0, 0, omega );
+ // top boundary
+ bc.addVelocityBoundary1P( 1,nx-2,ny-1,ny-1, omega );
+
+ // corners
+ bc.addExternalVelocityCornerNN( 0, 0, omega );
+ bc.addExternalVelocityCornerNP( 0,ny-1, omega );
+ bc.addExternalVelocityCornerPN( nx-1, 0, omega );
+ bc.addExternalVelocityCornerPP( nx-1,ny-1, omega );
+}
+
+void setBoundaryValues( UnitConverter<T,DESCRIPTOR> const& converter,
+ BlockLatticeStructure2D<T,DESCRIPTOR>& lattice, int iT ) {
+
+ if ( iT==0 ) {
+
+ const int nx = lattice.getNx();
+ const int ny = lattice.getNy();
+
+ // set initial values: v = [0,0]
+ for ( int iX=0; iX<nx; ++iX ) {
+ for ( int iY=0; iY<ny; ++iY ) {
+ T vel[] = { T(), T()};
+ lattice.get( iX,iY ).defineRhoU( ( T )1, vel );
+ lattice.get( iX,iY ).iniEquilibrium( ( T )1, vel );
+ }
+ }
+
+ // set non-zero velocity for upper boundary cells
+ for ( int iX=1; iX<nx-1; ++iX ) {
+ T u = converter.getCharLatticeVelocity();
+ T vel[] = { u, T() };
+ lattice.get( iX,ny-1 ).defineRhoU( ( T )1, vel );
+ lattice.get( iX,ny-1 ).iniEquilibrium( ( T )1, vel );
+ }
+
+ // Make the lattice ready for simulation
+ lattice.initialize();
+ }
+}
+
+void getResults( BlockLatticeStructure2D<T,DESCRIPTOR>& lattice,
+ UnitConverter<T,DESCRIPTOR> const& converter, int iT, Timer<T>* timer,
+ const T logT, const T imSave, const T vtkSave,
+ std::string filenameGif, std::string filenameVtk,
+ const int timerPrintMode, const int timerTimeSteps, bool converged ) {
+
+ // Get statistics
+ if ( iT%converter.getLatticeTime( logT )==0 || converged ) {
+ lattice.getStatistics().print( iT, converter.getPhysTime( iT ) );
+ }
+
+// if ( iT%timerTimeSteps==0 || converged ) {
+ if ( iT%timerTimeSteps==0 ) {
+ timer->print( iT,timerPrintMode );
+ }
+
+ BlockVTKwriter2D<T> vtkWriter( filenameVtk );
+ BlockLatticePhysVelocity2D<T,DESCRIPTOR> velocity( lattice,converter );
+ BlockLatticePhysPressure2D<T,DESCRIPTOR> pressure( lattice,converter );
+ vtkWriter.addFunctor( velocity );
+ vtkWriter.addFunctor( pressure );
+
+ // Writes the Gif files
+ if ( ( iT%converter.getLatticeTime( imSave )==0 && iT>0 ) || converged ) {
+ BlockEuklidNorm2D<T,DESCRIPTOR> normVel( velocity );
+ BlockGifWriter<T> gifWriter;
+ gifWriter.write( normVel, 0, 3, iT, filenameVtk );
+// gifWriter.write(normVel, iT, "vel");
+ }
+
+ // Writes the VTK files
+ if ( ( iT%converter.getLatticeTime( vtkSave )==0 && iT>0 ) || converged ) {
+ vtkWriter.write( iT );
+ }
+}
+
+
+int main( int argc, char* argv[] ) {
+
+ // === 1st Step: Initialization ===
+ olbInit( &argc, &argv );
+ OstreamManager clout( std::cout,"main" );
+
+ string fName( "cavity2d.xml" );
+ XMLreader config( fName );
+
+ std::string olbdir = "../../"; //config["Application"]["OlbDir"].get<std::string>();
+ std::string outputdir = "./tmp/"; //config["Output"]["OutputDir"].get<std::string>();
+ singleton::directories().setOlbDir( olbdir );
+ singleton::directories().setOutputDir( outputdir );
+
+ // call creator functions using xml data
+ UnitConverter<T,DESCRIPTOR>* converter = createUnitConverter<T,DESCRIPTOR>( config );
+ // Prints the converter log as console output
+ converter->print();
+ // Writes the converter log in a file
+ converter->write("cavity2d");
+
+ int N = converter->getLatticeLength(1) + 1; // number of voxels in x,y,z direction
+ Timer<T>* timer = createTimer<T>( config, *converter, N*N );
+
+ // === 3rd Step: Prepare Lattice ===
+ T logT = 0.1; //config["Output"]["Log"]["SaveTime"].get<T>();
+ T imSave = 1; //config["Output"]["VisualizationImages"]["SaveTime"].get<T>();
+ T vtkSave = 1; //config["Output"]["VisualizationVTK"]["SaveTime"].get<T>();
+ T maxPhysT = 100; //config["Application"]["PhysParam"]["MaxTime"].get<T>();
+ int timerSkipType = 0; //config["Output"]["Timer"]["SkipType"].get<T>();
+ int timerPrintMode = 0; //config["Output"]["Timer"]["PrintMode"].get<int>();
+ int timerTimeSteps = 1;
+
+ if ( timerSkipType == 0 ) {
+ timerTimeSteps = converter->getLatticeTime( .1 );
+ }
+// else {
+// config["Output"]["Timer"]["TimeSteps"].read( timerTimeSteps );
+// }
+
+
+ std::string filenameGif = "cavity2dimage"; //config["Output"]["VisualizationImages"]["Filename"].get<std::string>();
+ std::string filenameVtk = "cavity2dvtk"; //config["Output"]["VisualizationVTK"]["Filename"].get<std::string>();
+
+ BlockLattice2D<T, DESCRIPTOR> lattice( N, N );
+
+ ConstRhoBGKdynamics<T, DESCRIPTOR> bulkDynamics (
+ converter->getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,DESCRIPTOR>()
+ );
+
+ OnLatticeBoundaryCondition2D<T,DESCRIPTOR>*
+ boundaryCondition = createInterpBoundaryCondition2D<T,DESCRIPTOR,ConstRhoBGKdynamics<T,DESCRIPTOR> >( lattice );
+
+ prepareLattice( *converter, lattice, bulkDynamics, *boundaryCondition );
+
+ // === 4th Step: Main Loop with Timer ===
+
+ int interval = converter->getLatticeTime( 1 /*config["Application"]["ConvergenceCheck"]["interval"].get<T>()*/ );
+ T epsilon = 1e-3; //config["Application"]["ConvergenceCheck"]["residuum"].get<T>();
+ util::ValueTracer<T> converge( interval, epsilon );
+
+ timer->start();
+ for ( int iT=0; iT <= converter->getLatticeTime( maxPhysT ); ++iT ) {
+ if ( converge.hasConverged() ) {
+ clout << "Simulation converged." << endl;
+ getResults( lattice, *converter, iT, timer, logT, imSave, vtkSave, filenameGif, filenameVtk, timerPrintMode, timerTimeSteps, converge.hasConverged() );
+
+ break;
+ }
+
+ // === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues( *converter, lattice, iT );
+ // === 6th Step: Collide and Stream Execution ===
+ lattice.collideAndStream();
+ // === 7th Step: Computation and Output of the Results ===
+ getResults( lattice, *converter, iT, timer, logT, imSave, vtkSave, filenameGif, filenameVtk, timerPrintMode, timerTimeSteps, converge.hasConverged() );
+ converge.takeValue( lattice.getStatistics().getAverageEnergy(), true );
+ }
+
+ timer->stop();
+ timer->printSummary();
+ delete converter;
+ delete timer;
+ delete boundaryCondition;
+}