summaryrefslogtreecommitdiff
path: root/examples/laminar/cavity3d/sequential/cavity3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/laminar/cavity3d/sequential/cavity3d.cpp')
-rw-r--r--examples/laminar/cavity3d/sequential/cavity3d.cpp253
1 files changed, 253 insertions, 0 deletions
diff --git a/examples/laminar/cavity3d/sequential/cavity3d.cpp b/examples/laminar/cavity3d/sequential/cavity3d.cpp
new file mode 100644
index 0000000..3700de8
--- /dev/null
+++ b/examples/laminar/cavity3d/sequential/cavity3d.cpp
@@ -0,0 +1,253 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2014 Mathias J. Krause
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* cavity3d.cpp:
+ * This example illustrates a flow in a cuboid, lid-driven cavity.
+ * This version is for sequential use. A version for parallel use
+ * is also available.
+ */
+
+
+#include "olb3D.h"
+#ifndef OLB_PRECOMPILED // Unless precompiled version is used,
+#include "olb3D.hh" // include full template code
+#endif
+
+#include <cmath>
+#include <iostream>
+#include <fstream>
+
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace olb::util;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D3Q19<>
+
+const int N = 30; // resolution of the model
+//const int M = 1; // time discretization refinement
+const T maxT = (T) 100.; // max. simulation time in s, SI unit
+
+const T interval = 1.0; // Time intervall in seconds for convergence check
+const T epsilon = 1e-3; // Residuum for convergence check
+
+void prepareGeometry( UnitConverter<T, DESCRIPTOR> const& converter, IndicatorF3D<T>& indicator, BlockGeometry3D<T>& blockGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ // Sets material number for fluid and boundary
+ blockGeometry.rename( 0,2,indicator );
+ blockGeometry.rename( 2,1,1,1,1 );
+
+ Vector<T,3> origin( T(), converter.getCharPhysLength(), T() );
+ Vector<T,3> extend( converter.getCharPhysLength(), converter.getConversionFactorLength(), converter.getCharPhysLength() );
+ IndicatorCuboid3D<T> lid( extend,origin );
+
+ blockGeometry.rename( 2,3,1,lid );
+
+ // Removes all not needed boundary voxels outside the surface
+ blockGeometry.clean();
+ // Removes all not needed boundary voxels inside the surface
+ blockGeometry.innerClean();
+ blockGeometry.checkForErrors();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+
+void prepareLattice( UnitConverter<T, DESCRIPTOR> const& converter,
+ BlockLatticeStructure3D<T,DESCRIPTOR>& lattice,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ OnLatticeBoundaryCondition3D<T,DESCRIPTOR>& bc,
+ BlockGeometry3D<T>& blockGeometry) {
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ // Material=0 -->do nothing
+ lattice.defineDynamics( blockGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ // Material=1 -->bulk dynamics
+ lattice.defineDynamics( blockGeometry, 1, &bulkDynamics );
+
+ // Material=2 -->bounce back
+ //lattice.defineDynamics(superGeometry, 2, &instances::getBounceBack<T, DESCRIPTOR>());
+
+ // Material=2,3 -->bulk dynamics, velocity boundary
+ lattice.defineDynamics( blockGeometry, 2, &bulkDynamics );
+ lattice.defineDynamics( blockGeometry, 3, &bulkDynamics );
+ bc.addVelocityBoundary( blockGeometry, 2, omega );
+ bc.addVelocityBoundary( blockGeometry, 3, omega );
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+void setBoundaryValues( UnitConverter<T, DESCRIPTOR> const& converter,
+ BlockLatticeStructure3D<T,DESCRIPTOR>& lattice, BlockGeometry3D<T>& blockGeometry, int iT ) {
+
+ OstreamManager clout( std::cout,"setBoundaryValues" );
+
+ if ( iT==0 ) {
+
+ AnalyticalConst3D<T,T> rhoF( 1 );
+ std::vector<T> velocity( 3,T() );
+ AnalyticalConst3D<T,T> uF( velocity );
+
+ lattice.iniEquilibrium( blockGeometry, 1, rhoF, uF );
+ lattice.iniEquilibrium( blockGeometry, 2, rhoF, uF );
+ lattice.iniEquilibrium( blockGeometry, 3, rhoF, uF );
+
+ lattice.defineRhoU( blockGeometry, 1, rhoF, uF );
+ lattice.defineRhoU( blockGeometry, 2, rhoF, uF );
+ lattice.defineRhoU( blockGeometry, 3, rhoF, uF );
+
+ velocity[0]=converter.getCharLatticeVelocity();
+ AnalyticalConst3D<T,T> u( velocity );
+
+ lattice.defineU( blockGeometry,3,u );
+
+ // Make the lattice ready for simulation
+ lattice.initialize();
+ }
+}
+
+void getResults( BlockLatticeStructure3D<T,DESCRIPTOR>& lattice,
+ UnitConverter<T, DESCRIPTOR> const& converter, BlockGeometry3D<T>& blockGeometry, int iT, Timer<T>& timer, bool converged ) {
+
+ OstreamManager clout( std::cout,"getResults" );
+ BlockVTKwriter3D<T> vtkWriter( "cavity3d" );
+
+ const T logT = ( T )1.;
+ const T vtkSave = ( T )1.;
+
+ if ( iT==0 ) {
+ BlockLatticeGeometry3D<T, DESCRIPTOR> geometry( lattice, blockGeometry );
+ vtkWriter.write( geometry );
+ }
+
+ // Get statistics
+ if ( (iT%converter.getLatticeTime( logT )==0 && iT>0) || converged ) {
+ timer.update( iT );
+ timer.printStep( 2 );
+ lattice.getStatistics().print( iT,converter.getPhysTime( iT ) );
+ }
+
+ // Writes the VTK files
+ if ( (iT%converter.getLatticeTime( vtkSave )==0 && iT>0) || converged ) {
+
+ BlockLatticePhysVelocity3D<T, DESCRIPTOR> velocity( lattice, 0, converter );
+ BlockLatticePhysPressure3D<T, DESCRIPTOR> pressure( lattice, 0, converter );
+ vtkWriter.addFunctor( velocity );
+ vtkWriter.addFunctor( pressure );
+
+ vtkWriter.write( iT );
+ }
+}
+
+
+
+int main( int argc, char **argv ) {
+
+ // === 1st Step: Initialization ===
+
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+
+ UnitConverterFromResolutionAndRelaxationTime<T, DESCRIPTOR> const converter(
+ int {N}, // resolution: number of voxels per charPhysL
+ (T) 0.509, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
+ (T) 1.0, // charPhysLength: reference length of simulation geometry
+ (T) 1.0, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) 0.001, // physViscosity: physical kinematic viscosity in __m^2 / s__
+ (T) 1.0 // physDensity: physical density in __kg / m^3__
+ );
+ // Prints the converter log as console output
+ converter.print();
+ // Writes the converter log in a file
+ converter.write("cavity3d");
+
+
+ // === 2nd Step: Prepare Geometry ===
+
+ // Instantiation of a unit cube by an indicator
+ Vector<T,3> origin;
+ Vector<T,3> extend( converter.getCharPhysLength() );
+ IndicatorCuboid3D<T> cube( extend,origin );
+
+ Cuboid3D<T> cuboid( cube, converter.getConversionFactorLength() );
+
+ // Instantiation of a block geometry
+ BlockGeometry3D<T> blockGeometry( cuboid );
+
+ prepareGeometry( converter, cube, blockGeometry );
+
+
+ // === 3rd Step: Prepare Lattice ===
+
+ BlockLattice3D<T, DESCRIPTOR> lattice( blockGeometry.getNx(), blockGeometry.getNy(), blockGeometry.getNz(), blockGeometry );
+
+ ConstRhoBGKdynamics<T, DESCRIPTOR> bulkDynamics (
+ converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta<T,DESCRIPTOR>() );
+
+ OnLatticeBoundaryCondition3D<T,DESCRIPTOR>*
+ boundaryCondition = createInterpBoundaryCondition3D<T,DESCRIPTOR,ConstRhoBGKdynamics<T,DESCRIPTOR> >( lattice );
+
+ prepareLattice( converter, lattice, bulkDynamics, *boundaryCondition, blockGeometry );
+
+ // === 4th Step: Main Loop with Timer ===
+ util::ValueTracer<T> converge( converter.getLatticeTime(interval), epsilon );
+
+ Timer<T> timer( converter.getLatticeTime( maxT ), std::pow<int>(converter.getResolution(),3) );
+ timer.start();
+ int iT;
+
+ for ( iT=0; iT < converter.getLatticeTime( maxT ); ++iT ) {
+
+ if ( converge.hasConverged() ) {
+ clout << "Simulation converged." << endl;
+ getResults( lattice, converter, blockGeometry, iT, timer, converge.hasConverged() );
+ break;
+ }
+
+ // === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues( converter, lattice, blockGeometry, iT );
+
+ // === 6th Step: Collide and Stream Execution ===
+ lattice.collideAndStream();
+
+ // === 7th Step: Computation and Output of the Results ===
+ getResults( lattice, converter, blockGeometry, iT, timer, converge.hasConverged() );
+ converge.takeValue( lattice.getStatistics().getAverageEnergy(), true );
+ }
+
+ timer.stop();
+ timer.printSummary();
+}