summaryrefslogtreecommitdiff
path: root/examples/laminar/powerLaw2d/powerLaw2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/laminar/powerLaw2d/powerLaw2d.cpp')
-rw-r--r--examples/laminar/powerLaw2d/powerLaw2d.cpp456
1 files changed, 456 insertions, 0 deletions
diff --git a/examples/laminar/powerLaw2d/powerLaw2d.cpp b/examples/laminar/powerLaw2d/powerLaw2d.cpp
new file mode 100644
index 0000000..fd5e833
--- /dev/null
+++ b/examples/laminar/powerLaw2d/powerLaw2d.cpp
@@ -0,0 +1,456 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2016 Vojtech Cvrcek, Mathias J. Krause
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* powerLaw2d.cpp:
+ * This example examines a steady flow of a non-newtonian fluid in a channel.
+ * At the inlet, a profile for non-newtonian fluid is imposed on the velocity,
+ * where as the outlet implements an outflow condition grad_x p = 0.
+ * The power law model is for n=1 and m=charNu in fact the classical poiseuille flow.
+ * One can validate the error with using functors in void error.
+ *
+ *
+ */
+
+#include "olb2D.h"
+#include "olb2D.hh" // include full template code
+
+#include <vector>
+#include <cmath>
+#include <iostream>
+#include <fstream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace olb::util;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR DynOmegaD2Q9Descriptor
+
+// Parameters for the simulation setup
+int N = 40; // resolution of the model
+T Re = 10.; // Reynolds number
+T tau = 0.8;
+T lx = 2.; // channel lenght
+T ly = 1.; // channel width
+T maxU = 1; // Max velocity
+T Tmax = 20; // max. phys. time in s
+T Tprint = 1; // Phys time at which the status of the system is print
+// set the changes for n and m in powerLawBGKdynamics.h
+T n = .2; // parameter in power law model (n=1 Newtonian fluid)
+bool bcTypePeriodic = false; //true works only with one core
+
+const T residuum = 1e-5; // residuum for the convergence check
+
+void prepareGeometry( PowerLawUnitConverter<T,DESCRIPTOR> const& converter,
+ SuperGeometry2D<T>& superGeometry ) {
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ Vector<T,2> extend( lx, ly );
+ Vector<T,2> origin;
+
+ superGeometry.rename( 0,2 );
+ superGeometry.rename( 2,1,1,1 );
+
+ // Set material number for inflow
+ extend[0] = 1.2*converter.getConversionFactorLength();
+ origin[0] = -converter.getConversionFactorLength();
+ IndicatorCuboid2D<T> inflow( extend, origin );
+ if (bcTypePeriodic)
+ superGeometry.rename( 1,3,inflow );
+ else
+ superGeometry.rename( 2,3,1,inflow );
+ // Set material number for outflow
+ origin[0] = lx-.5*converter.getConversionFactorLength();
+ IndicatorCuboid2D<T> outflow( extend, origin );
+ if (bcTypePeriodic)
+ superGeometry.rename( 1,4,outflow );
+ else
+ superGeometry.rename( 2,4,1,outflow );
+ // Removes all not needed boundary voxels outside the surface
+ superGeometry.clean();
+ // Removes all not needed boundary voxels inside the surface
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+ superGeometry.getStatistics().print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+ return;
+}
+
+// Set up the geometry of the simulation
+void prepareLattice( SuperLattice2D<T,DESCRIPTOR>& sLattice,
+ PowerLawUnitConverter<T,DESCRIPTOR> const& converter,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ Dynamics<T, DESCRIPTOR>& inDynamics,
+ Dynamics<T, DESCRIPTOR>& outDynamics,
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition,
+ SuperGeometry2D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ // Material=0 -->do nothing
+ sLattice.defineDynamics( superGeometry.getMaterialIndicator(0), &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ // Material=1 -->bulk dynamics
+ sLattice.defineDynamics( superGeometry.getMaterialIndicator(1), &bulkDynamics );
+
+ // Material=2 -->bounce back
+ sLattice.defineDynamics( superGeometry.getMaterialIndicator(2), &instances::getBounceBack<T, DESCRIPTOR>() );
+
+ // Material=3 -->bulk dynamics (inflow)
+ if (bcTypePeriodic)
+ sLattice.defineDynamics( superGeometry.getMaterialIndicator(3), &inDynamics );
+ else {
+ sLattice.defineDynamics( superGeometry.getMaterialIndicator(3), &bulkDynamics );
+ // Setting of the boundary conditions
+ sBoundaryCondition.addVelocityBoundary( superGeometry, 3, omega );
+ }
+
+ // Material=4 -->bulk dynamics (outflow)
+ if (bcTypePeriodic)
+ sLattice.defineDynamics( superGeometry.getMaterialIndicator(4), &outDynamics );
+ else {
+ sLattice.defineDynamics( superGeometry.getMaterialIndicator(4), &bulkDynamics );
+ // Setting of the boundary conditions
+ sBoundaryCondition.addPressureBoundary( superGeometry, 4, omega );
+ }
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+
+void setBoundaryValues( SuperLattice2D<T, DESCRIPTOR>& sLattice,
+ PowerLawUnitConverter<T,DESCRIPTOR> const& converter,
+ int iT, SuperGeometry2D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"setBoundaryValues" );
+
+ // Set initial and steady boundary conditions
+ if ( iT==0 ) {
+
+ // Define the analytical solutions for pressure and velocity
+ T maxVelocity = converter.getCharLatticeVelocity();
+ T distance2Wall = converter.getConversionFactorLength()/2.;
+
+ T p0 = converter.getPhysConsistencyCoeff()*pow( converter.getCharPhysVelocity(),n )*pow( ( n + 1. )/n,n )*pow( 2./( ly-distance2Wall*2 ),n + 1. );
+
+ AnalyticalLinear2D<T,T> rho( converter.getLatticeDensityFromPhysPressure( -p0 ) - 1., 0, converter.getLatticeDensityFromPhysPressure( p0*(lx + distance2Wall*2.)/2. ) );
+
+ PowerLaw2D<T> u( superGeometry, 3, maxVelocity, distance2Wall, ( n + 1. )/n );
+
+ // Set the analytical solutions for pressure and velocity
+ AnalyticalConst2D<T,T> omega0( converter.getLatticeRelaxationFrequency() );
+ sLattice.defineField<descriptors::OMEGA>( superGeometry, 1, omega0 );
+ sLattice.defineField<descriptors::OMEGA>( superGeometry, 3, omega0 );
+ sLattice.defineField<descriptors::OMEGA>( superGeometry, 4, omega0 );
+
+ // Set the analytical solutions for pressure and velocity
+ // Initialize all values of distribution functions to their local equilibrium
+
+ sLattice.defineRhoU( superGeometry, 1, rho, u );
+ sLattice.iniEquilibrium( superGeometry, 1, rho, u );
+
+ sLattice.iniEquilibrium( superGeometry, 3, rho, u );
+ sLattice.defineRhoU( superGeometry, 3, rho, u );
+
+ sLattice.iniEquilibrium( superGeometry, 4, rho, u );
+ sLattice.defineRhoU( superGeometry, 4, rho, u );
+
+ // Make the lattice ready for simulation
+ sLattice.initialize();
+ }
+}
+
+// Compute error norms
+void error( SuperGeometry2D<T>& superGeometry,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice,
+ PowerLawUnitConverter<T,DESCRIPTOR> const& converter,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics ) {
+ OstreamManager clout( std::cout,"error" );
+
+ int input[1] = { };
+ T result[1] = { };
+
+ T distance2Wall = converter.getConversionFactorLength()/2.;
+
+ PowerLaw2D<T> uSol( superGeometry,3,converter.getCharPhysVelocity(),distance2Wall,( n + 1. )/n );
+ SuperLatticePhysVelocity2D<T,DESCRIPTOR> u( sLattice,converter );
+
+ T p0 = converter.getPhysConsistencyCoeff()*pow( converter.getCharPhysVelocity(),n )*pow( ( n + 1. )/n,n )*pow( 2./( ly-distance2Wall*2 ),n + 1. );
+ AnalyticalLinear2D<T,T> pressureSol( -p0, 0, p0*(lx + distance2Wall*2.)/2. );
+ SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure( sLattice,converter );
+
+ auto indicatorF = superGeometry.getMaterialIndicator(1);
+
+ // velocity error
+ SuperAbsoluteErrorL1Norm2D<T> absVelocityErrorNormL1(u, uSol, indicatorF);
+ absVelocityErrorNormL1(result, input);
+ clout << "velocity-L1-error(abs)=" << result[0];
+ SuperRelativeErrorL1Norm2D<T> relVelocityErrorNormL1(u, uSol, indicatorF);
+ relVelocityErrorNormL1(result, input);
+ clout << "; velocity-L1-error(rel)=" << result[0] << std::endl;
+
+ SuperAbsoluteErrorL2Norm2D<T> absVelocityErrorNormL2(u, uSol, indicatorF);
+ absVelocityErrorNormL2(result, input);
+ clout << "velocity-L2-error(abs)=" << result[0];
+ SuperRelativeErrorL2Norm2D<T> relVelocityErrorNormL2(u, uSol, indicatorF);
+ relVelocityErrorNormL2(result, input);
+ clout << "; velocity-L2-error(rel)=" << result[0] << std::endl;
+
+ SuperAbsoluteErrorLinfNorm2D<T> absVelocityErrorNormLinf(u, uSol, indicatorF);
+ absVelocityErrorNormLinf(result, input);
+ clout << "velocity-Linf-error(abs)=" << result[0];
+ SuperRelativeErrorLinfNorm2D<T> relVelocityErrorNormLinf(u, uSol, indicatorF);
+ relVelocityErrorNormLinf(result, input);
+ clout << "; velocity-Linf-error(rel)=" << result[0] << std::endl;
+
+ // pressure error
+ SuperAbsoluteErrorL1Norm2D<T> absPressureErrorNormL1(pressure, pressureSol, indicatorF);
+ absPressureErrorNormL1(result, input);
+ clout << "pressure-L1-error(abs)=" << result[0];
+ SuperRelativeErrorL1Norm2D<T> relPressureErrorNormL1(pressure, pressureSol, indicatorF);
+ relPressureErrorNormL1(result, input);
+ clout << "; pressure-L1-error(rel)=" << result[0] << std::endl;
+
+ SuperAbsoluteErrorL2Norm2D<T> absPressureErrorNormL2(pressure, pressureSol, indicatorF);
+ absPressureErrorNormL2(result, input);
+ clout << "pressure-L2-error(abs)=" << result[0];
+ SuperRelativeErrorL2Norm2D<T> relPressureErrorNormL2(pressure, pressureSol, indicatorF);
+ relPressureErrorNormL2(result, input);
+ clout << "; pressure-L2-error(rel)=" << result[0] << std::endl;
+
+ SuperAbsoluteErrorLinfNorm2D<T> absPressureErrorNormLinf(pressure, pressureSol, indicatorF);
+ absPressureErrorNormLinf(result, input);
+ clout << "pressure-Linf-error(abs)=" << result[0];
+ SuperRelativeErrorLinfNorm2D<T> relPressureErrorNormLinf(pressure, pressureSol, indicatorF);
+ relPressureErrorNormLinf(result, input);
+ clout << "; pressure-Linf-error(rel)=" << result[0] << std::endl;
+}
+
+// Output to console and files
+void getResults( SuperLattice2D<T, DESCRIPTOR>& sLattice,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ PowerLawUnitConverter<T,DESCRIPTOR> const& converter, int iT,
+ SuperGeometry2D<T>& superGeometry, Timer<double>& timer ) {
+ OstreamManager clout( std::cout,"getResults" );
+
+ SuperVTMwriter2D<T> vtmWriter( "powerLaw2d" );
+ SuperLatticePhysVelocity2D<T, DESCRIPTOR> velocity( sLattice, converter );
+ SuperLatticePhysPressure2D<T, DESCRIPTOR> pressure( sLattice, converter );
+
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( pressure );
+
+ if ( iT==0 ) {
+ SuperLatticeCuboid2D<T, DESCRIPTOR> cuboid( sLattice );
+ SuperLatticeGeometry2D<T, DESCRIPTOR> geometry( sLattice,superGeometry );
+ SuperLatticeRank2D<T, DESCRIPTOR> rank( sLattice );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+ vtmWriter.createMasterFile();
+ }
+
+ if ( iT%converter.getLatticeTime( Tprint )==0 ) {
+ vtmWriter.write( iT );
+
+ SuperEuklidNorm2D<T, DESCRIPTOR> normVel( velocity );
+ BlockReduction2D2D<T> planeReduction( normVel, 600, BlockDataSyncMode::ReduceOnly );
+ // write output of velocity as JPEG
+ heatmap::write(planeReduction, iT);
+ }
+
+ // Writes output on the console
+ if ( iT%converter.getLatticeTime( Tprint )==0 ) {
+ timer.update( iT );
+ timer.printStep();
+ sLattice.getStatistics().print( iT,converter.getPhysTime( iT ) );
+ error( superGeometry, sLattice, converter, bulkDynamics );
+ }
+ return;
+}
+
+
+int main( int argc, char* argv[] ) {
+
+ // === 1st Step: Initialization ===
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+
+ /*
+ if ( argc > 1 ) {
+ N = atoi( argv[1] );
+ }
+ if ( argc > 2 ) {
+ n = atof( argv[2] );
+ }
+ */
+
+ singleton::directories().setOutputDir( "./tmp/" );
+
+ XMLreader config("input.xml");
+ config["geometry"]["N"].read(N);
+ config["geometry"]["lx"].read(lx);
+ config["geometry"]["ly"].read(ly);
+ config["dynamics"]["maxU"].read(maxU);
+ config["dynamics"]["Re"].read(Re);
+ config["dynamics"]["tau"].read(tau);
+ config["dynamics"]["n"].read(n);
+ config["time"]["Tmax"].read(Tmax);
+ config["time"]["Tprint"].read(Tprint);
+
+ /*
+ T physDeltaX = (ly/N);
+ T m = ly*maxU*pow( maxU/(2*ly),1-n )/Re;
+ T physViscosity = m*pow( maxU/(2*ly),n-1 );
+ T physDeltaT = (tau - 0.5) / DESCRIPTOR::invCs2 * pow(physDeltaX,2) / physViscosity;
+ PowerLawUnitConverter<T, DESCRIPTOR> const converter(
+ (T) physDeltaX,
+ (T) physDeltaT,
+ (T) ly,
+ (T) maxU,
+ (T) m,
+ (T) n, // power-law index
+ (T) 1.0 // physDensity: physical density in __kg / m^3__
+ );
+ */
+ PowerLawUnitConverterFrom_Resolution_RelaxationTime_Reynolds_PLindex<T, DESCRIPTOR> const converter(
+ int {N}, // resolution: number of voxels per charPhysL
+ (T) tau, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
+ (T) ly, // charPhysLength: reference length of simulation geometry
+ (T) maxU, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) Re, // Reynolds number
+ (T) n, // power-law index
+ (T) 1.0 // physDensity: physical density in __kg / m^3__
+ );
+ // Prints the converter log as console output
+ converter.print();
+ // Writes the converter log in a file
+ converter.write("powerLaw2d");
+
+
+ // === 2rd Step: Prepare Geometry ===
+ // Instantiation of a cuboidGeometry with weights
+
+ Vector<T,2> extend( lx, ly );
+ Vector<T,2> origin;
+ IndicatorCuboid2D<T> cuboid( extend, origin );
+
+#ifdef PARALLEL_MODE_MPI
+ CuboidGeometry2D<T> cuboidGeometry( cuboid, converter.getConversionFactorLength(), singleton::mpi().getSize() );
+#else
+ CuboidGeometry2D<T> cuboidGeometry( cuboid, converter.getConversionFactorLength(), 7 );
+#endif
+
+ // Periodic boundaries in x-direction
+ if (bcTypePeriodic)
+ cuboidGeometry.setPeriodicity( true, false );
+
+ //cuboidGeometry.printExtended();
+
+ HeuristicLoadBalancer<T> loadBalancer( cuboidGeometry );
+ SuperGeometry2D<T> superGeometry( cuboidGeometry, loadBalancer, 2 );
+ prepareGeometry( converter, superGeometry );
+
+ // === 3rd Step: Prepare Lattice ===
+ SuperLattice2D<T, DESCRIPTOR> sLattice( superGeometry );
+
+ T distance2Wall = converter.getConversionFactorLength()/2.;
+ T p0 = converter.getPhysConsistencyCoeff()*pow( converter.getCharPhysVelocity(),n )*pow( ( n + 1. )/n,n )*pow( 2./( ly-distance2Wall*2 ),n + 1. );
+
+ clout << "Dimensionalized version-1." << std::endl;
+ PowerLawBGKdynamics<T, DESCRIPTOR> bulkDynamics( converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta<T, DESCRIPTOR>(), converter.getLatticeConsistencyCoeff(), n );
+
+ PeriodicPressureDynamics<T, DESCRIPTOR, PowerLawBGKdynamics<T,DESCRIPTOR>> outDynamics( bulkDynamics,converter.getLatticeDensityFromPhysPressure( p0*(lx + distance2Wall*2.))-1,1,0);
+ PeriodicPressureDynamics<T, DESCRIPTOR, PowerLawBGKdynamics<T,DESCRIPTOR>> inDynamics( bulkDynamics,-converter.getLatticeDensityFromPhysPressure( p0*(lx + distance2Wall*2. ))+1,-1,0);
+ std::cout << -converter.getLatticeDensityFromPhysPressure( p0 )+1 << std::endl;
+
+ sOnLatticeBoundaryCondition2D<T, DESCRIPTOR> sBoundaryCondition( sLattice );
+ createLocalBoundaryCondition2D<T, DESCRIPTOR, PowerLawBGKdynamics<T,DESCRIPTOR> > ( sBoundaryCondition );
+
+ prepareLattice( sLattice, converter, bulkDynamics, inDynamics, outDynamics, sBoundaryCondition, superGeometry );
+
+ // === 4th Step: Main Loop with Timer ===
+ Timer<double> timer( converter.getLatticeTime( Tmax ), superGeometry.getStatistics().getNvoxel() );
+ util::ValueTracer<T> converge( converter.getLatticeTime( 0.1*Tprint ), residuum );
+ timer.start();
+
+ for ( int iT=0; iT<converter.getLatticeTime( Tmax ); ++iT ) {
+ if ( converge.hasConverged() ) {
+ clout << "Simulation converged." << endl;
+ getResults( sLattice, bulkDynamics, converter, iT, superGeometry, timer );
+
+ break;
+ }
+
+ // === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues( sLattice, converter, iT, superGeometry );
+ // === 7th Step: Computation and Output of the Results ===
+ getResults( sLattice, bulkDynamics, converter, iT, superGeometry, timer );
+ converge.takeValue( sLattice.getStatistics().getAverageEnergy(), true );
+ // === 6th Step: Collide and Stream Execution ===
+ sLattice.collideAndStream();
+
+ if (bcTypePeriodic)
+ sLattice.stripeOffDensityOffset ( sLattice.getStatistics().getAverageRho()-(T)1 );
+ }
+ timer.stop();
+ timer.printSummary();
+
+ // === 7th Step: Gnuplot ===
+ Gnuplot<T> gplot( "centerVelocity" );
+ T Ly = converter.getLatticeLength( ly );
+ for ( int iY=0; iY<=Ly; ++iY ) {
+ T dx = 1. / T(converter.getResolution());
+ // const T maxVelocity = converter.getPhysVelocity( converter.getCharLatticeVelocity() );
+ T point[2]= {T(),T()};
+ point[0] = .9*lx;
+ point[1] = ( T )iY/Ly;
+ // const T radius = ly/2.;
+ std::vector<T> axisPoint( 2,T() );
+ axisPoint[0] = lx/2.;
+ axisPoint[1] = ly/2.;
+ std::vector<T> axisDirection( 2,T() );
+ axisDirection[0] = 1;
+ axisDirection[1] = 0;
+ T distance2Wall = converter.getConversionFactorLength()/2.;
+ PowerLaw2D<T> uSol( superGeometry,3,converter.getCharPhysVelocity(),distance2Wall,( n + 1. )/n );
+ //Poiseuille2D<T> uSol( axisPoint, axisDirection, maxVelocity, radius ); // <---
+ T analytical[2] = {T(),T()};
+ uSol( analytical,point );
+ SuperLatticePhysVelocity2D<T, DESCRIPTOR> velocity( sLattice, converter );
+ AnalyticalFfromSuperF2D<T> intpolateVelocity( velocity, true );
+ T numerical[2] = {T(),T()};
+ intpolateVelocity( numerical,point );
+ gplot.setData( iY*dx, {analytical[0],numerical[0]}, {"analytical","numerical"} );
+ }
+ // Create PNG file
+ gplot.writePNG();
+}