summaryrefslogtreecommitdiff
path: root/examples/multiComponent/contactAngle3d/contactAngle3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/multiComponent/contactAngle3d/contactAngle3d.cpp')
-rw-r--r--examples/multiComponent/contactAngle3d/contactAngle3d.cpp393
1 files changed, 393 insertions, 0 deletions
diff --git a/examples/multiComponent/contactAngle3d/contactAngle3d.cpp b/examples/multiComponent/contactAngle3d/contactAngle3d.cpp
new file mode 100644
index 0000000..9f08d4e
--- /dev/null
+++ b/examples/multiComponent/contactAngle3d/contactAngle3d.cpp
@@ -0,0 +1,393 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2008 Orestis Malaspinas, Andrea Parmigiani
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* contactAngle3d.cpp
+ * In this example a semi-spherical droplet of fluid is initialised
+ * within a different fluid at a solid boundary. The contact angle
+ * is measured as the droplet comes to equilibrium. This is compared
+ * with the analytical angle (100 degrees) predicted by the
+ * parameters set for the boundary.
+ *
+ * This example demonstrates how to use the wetting solid boundaries
+ * for the free-energy model with two fluid components.
+ */
+
+#include "olb3D.h"
+#include "olb3D.hh" // use only generic version!
+#include <cstdlib>
+#include <iostream>
+#include <fstream>
+#include <math.h>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D3Q19<CHEM_POTENTIAL,FORCE>
+
+// Parameters for the simulation setup
+const int N = 75;
+const T nxy = 75.;
+const T nz = 50.;
+const T radius = 0.25 * nxy;
+
+const T alpha = 1.; // Interfacial width [lattice units]
+const T kappa1 = 0.005; // For surface tensions [lattice units]
+const T kappa2 = 0.005; // For surface tensions [lattice units]
+const T gama = 10.; // For mobility of interface [lattice units]
+const T h1 = 0.0001448; // Contact angle 80 degrees [lattice units]
+const T h2 = -0.0001448; // Contact angle 100 degrees [lattice units]
+
+const int maxIter = 70000;
+const int vtkIter = 200;
+const int statIter = 200;
+const bool calcAngle = true;
+
+T angle_prev = 90.;
+
+
+void prepareGeometry( SuperGeometry3D<T>& superGeometry,
+ UnitConverter<T, DESCRIPTOR>& converter) {
+
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ superGeometry.rename( 0,2 );
+
+ Vector<T,3> extend(nxy+2., nxy+2., nz-1.*converter.getPhysDeltaX() );
+ Vector<T,3> origin( -1., -1., 0.5*converter.getPhysDeltaX() );
+ IndicatorCuboid3D<T> inner ( extend, origin );
+ superGeometry.rename( 2,1,inner );
+
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+
+void prepareLattice( SuperLattice3D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice3D<T, DESCRIPTOR>& sLattice2,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics1,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics2,
+ UnitConverter<T, DESCRIPTOR>& converter,
+ SuperGeometry3D<T>& superGeometry,
+ sOnLatticeBoundaryCondition3D<T,DESCRIPTOR>& sOnBC1,
+ sOnLatticeBoundaryCondition3D<T,DESCRIPTOR>& sOnBC2 ) {
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ // Define lattice Dynamics
+ sLattice1.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice1.defineDynamics( superGeometry, 1, &bulkDynamics1 );
+ sLattice2.defineDynamics( superGeometry, 1, &bulkDynamics2 );
+ sLattice1.defineDynamics( superGeometry, 2, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 2, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ // Add wall boundary
+ sOnBC1.addFreeEnergyWallBoundary( superGeometry, 2, alpha, kappa1, kappa2, h1, h2, 1 );
+ sOnBC2.addFreeEnergyWallBoundary( superGeometry, 2, alpha, kappa1, kappa2, h1, h2, 2 );
+
+ // Bulk initial conditions
+ // Define spherical domain for fluid 2
+ std::vector<T> v( 3,T() );
+ AnalyticalConst3D<T,T> zeroVelocity( v );
+
+ AnalyticalConst3D<T,T> one( 1.0 );
+ SmoothIndicatorSphere3D<T,T> sphere( {nxy/2., nxy/2., 0.}, radius, 10.*alpha );
+
+ AnalyticalIdentity3D<T,T> rho( one );
+ AnalyticalIdentity3D<T,T> phi( one - sphere - sphere );
+
+ sLattice1.iniEquilibrium( superGeometry, 1, rho, zeroVelocity );
+ sLattice2.iniEquilibrium( superGeometry, 1, phi, zeroVelocity );
+
+ sLattice1.iniEquilibrium( superGeometry, 2, rho, zeroVelocity );
+ sLattice2.iniEquilibrium( superGeometry, 2, phi, zeroVelocity );
+
+ sLattice1.initialize();
+ sLattice2.initialize();
+
+ sLattice1.communicate();
+ sLattice2.communicate();
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+
+void prepareCoupling( SuperLattice3D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice3D<T, DESCRIPTOR>& sLattice2,
+ SuperGeometry3D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareCoupling" );
+ clout << "Add lattice coupling" << endl;
+
+ // Add the lattice couplings (not to the solid nodes)
+ // The chemical potential coupling must come before the force coupling
+ FreeEnergyChemicalPotentialGenerator3D<T, DESCRIPTOR> coupling1(
+ alpha, kappa1, kappa2);
+ FreeEnergyForceGenerator3D<T, DESCRIPTOR> coupling2;
+
+ // Suppress compiler warnings
+ coupling1.shift(0, 0, 0);
+ coupling2.shift(0, 0, 0);
+
+ sLattice1.addLatticeCoupling( superGeometry, 1, coupling1, sLattice2 );
+ sLattice2.addLatticeCoupling( superGeometry, 1, coupling2, sLattice1 );
+
+ clout << "Add lattice coupling ... OK!" << endl;
+}
+
+
+void getResults( SuperLattice3D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice3D<T, DESCRIPTOR>& sLattice2, int iT,
+ SuperGeometry3D<T>& superGeometry, Timer<T>& timer,
+ UnitConverter<T, DESCRIPTOR> converter ) {
+
+ OstreamManager clout( std::cout,"getResults" );
+ SuperVTMwriter3D<T> vtmWriter( "contactAngle3d" );
+
+ if ( iT==0 ) {
+ // Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry3D<T, DESCRIPTOR> geometry( sLattice1, superGeometry );
+ SuperLatticeCuboid3D<T, DESCRIPTOR> cuboid( sLattice1 );
+ SuperLatticeRank3D<T, DESCRIPTOR> rank( sLattice1 );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+ vtmWriter.createMasterFile();
+ }
+
+ // Get statistics
+ if ( iT%statIter==0 ) {
+ // Timer console output
+ timer.update( iT );
+ timer.printStep();
+ sLattice1.getStatistics().print( iT, converter.getPhysTime(iT) );
+ sLattice2.getStatistics().print( iT, converter.getPhysTime(iT) );
+ }
+
+ // Writes the VTK files
+ if ( iT%vtkIter==0 ) {
+ AnalyticalConst3D<T,T> half_( 0.5 );
+ SuperLatticeFfromAnalyticalF3D<T, DESCRIPTOR> half(half_, sLattice1);
+
+ SuperLatticeVelocity3D<T, DESCRIPTOR> velocity( sLattice1 );
+ SuperLatticeDensity3D<T, DESCRIPTOR> rho( sLattice1 );
+ rho.getName() = "rho";
+ SuperLatticeDensity3D<T, DESCRIPTOR> phi( sLattice2 );
+ phi.getName() = "phi";
+
+ SuperIdentity3D<T,T> c1 (half*(rho+phi));
+ c1.getName() = "density-fluid-1";
+ SuperIdentity3D<T,T> c2 (half*(rho-phi));
+ c2.getName() = "density-fluid-2";
+
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( rho );
+ vtmWriter.addFunctor( phi );
+ vtmWriter.addFunctor( c1 );
+ vtmWriter.addFunctor( c2 );
+ vtmWriter.write( iT );
+
+ // Evaluation of contact angle
+ if (calcAngle) {
+ int Nz = (int)( N * nz / nxy );
+ T dx = converter.getPhysDeltaX();
+ AnalyticalFfromSuperF3D<T,T> interpolPhi( phi, true, 1 );
+
+ T base1 = 0.;
+ T base2 = 0.;
+ T height1 = 0.;
+ T height2 = 0.;
+
+ double pos[3] = {0., nxy/2., dx};
+ for(int ix=0; ix<N; ix++) {
+ T phi1, phi2;
+ pos[0] = ix * dx;
+ interpolPhi( &phi1, pos );
+ if (phi1 < 0.) {
+ pos[0] = (ix-1) * dx;
+ interpolPhi( &phi2, pos );
+ base1 = 2. * ( 0.5*N - ix + phi1/(phi1-phi2) );
+ break;
+ }
+ }
+
+ pos[2] = 3.*dx;
+ for(int ix=0; ix<N; ix++) {
+ T phi1, phi2;
+ pos[0] = ix * dx;
+ interpolPhi( &phi1, pos );
+ if (phi1 < 0.) {
+ pos[0] = (ix-1) * dx;
+ interpolPhi( &phi2, pos );
+ base2 = 2. * ( 0.5*N - ix + phi1/(phi1-phi2) );
+ break;
+ }
+ }
+
+ pos[0] = nxy / 2.;
+ for(int iz=2; iz<Nz; iz++) {
+ T phi1, phi2;
+ pos[2] = iz * dx;
+ interpolPhi( &phi1, pos );
+ if (phi1 > 0.) {
+ pos[2] = (iz-1) * dx;
+ interpolPhi( &phi2, pos );
+ height1 = iz - 1. - phi1/(phi1-phi2);
+ height2 = iz - 3. - phi1/(phi1-phi2);
+ break;
+ }
+ }
+
+ // Calculate simulated contact angle
+ T pi = 3.14159265;
+ T height = height1 + 1.;
+ T base = base1 + 2 * (radius - height1) / base1;
+ T radius = (4.*height2*height2 + base2*base2) / ( 8.*height2 );
+ T angle_rad = pi + atan( 0.5*base / (radius - height) );
+ T angle = angle_rad * 180. / pi;
+ if ( angle > 180. ) angle -= 180.;
+
+ // Calculate theoretical contact angle
+ T ak1 = alpha * kappa1;
+ T ak2 = alpha * kappa2;
+ T k12 = kappa1 + kappa2;
+ T num1 = pow(ak1 + 4 * h1, 1.5) - pow(ak1 - 4 * h1, 1.5);
+ T num2 = pow(ak2 + 4 * h2, 1.5) - pow(ak2 - 4 * h2, 1.5);
+ T angle_an = 180 / pi * acos(num2 / (2 * k12 * sqrt(ak2)) - \
+ num1 / (2 * k12 * sqrt(ak1)));
+
+ clout << "----->>>>> Contact angle: " << angle << " ; ";
+ clout << "Analytical contact angle: " << angle_an << std::endl;
+ clout << "----->>>>> Difference to previous: " << angle-angle_prev << std::endl;
+ angle_prev = angle;
+ }
+ }
+}
+
+
+int main( int argc, char *argv[] ) {
+
+ // === 1st Step: Initialization ===
+
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+
+ UnitConverterFromResolutionAndRelaxationTime<T,DESCRIPTOR> converter(
+ (T) N, // resolution
+ (T) 1., // lattice relaxation time (tau)
+ (T) nxy, // charPhysLength: reference length of simulation geometry
+ (T) 0.0001, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) 1.002e-8, // physViscosity: physical kinematic viscosity in __m^2 / s__
+ (T) 1. // physDensity: physical density in __kg / m^3__
+ );
+
+ // Prints the converter log as console output
+ converter.print();
+
+ // === 2nd Step: Prepare Geometry ===
+ std::vector<T> extend = { nxy, nxy, nz };
+ std::vector<T> origin = { 0., 0., 0. };
+ IndicatorCuboid3D<T> cuboid(extend,origin);
+#ifdef PARALLEL_MODE_MPI
+ CuboidGeometry3D<T> cGeometry( cuboid, converter.getPhysDeltaX(), singleton::mpi().getSize() );
+#else
+ CuboidGeometry3D<T> cGeometry( cuboid, converter.getPhysDeltaX() );
+#endif
+
+ // Set periodic boundaries to the domain
+ cGeometry.setPeriodicity( true, true, false );
+
+ // Instantiation of loadbalancer
+ HeuristicLoadBalancer<T> loadBalancer( cGeometry );
+ loadBalancer.print();
+
+ // Instantiation of superGeometry
+ SuperGeometry3D<T> superGeometry( cGeometry,loadBalancer );
+
+ prepareGeometry( superGeometry, converter );
+
+ // === 3rd Step: Prepare Lattice ===
+ SuperLattice3D<T, DESCRIPTOR> sLattice1( superGeometry );
+ SuperLattice3D<T, DESCRIPTOR> sLattice2( superGeometry );
+
+ ForcedBGKdynamics<T, DESCRIPTOR> bulkDynamics1 (
+ converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,DESCRIPTOR>() );
+
+ FreeEnergyBGKdynamics<T, DESCRIPTOR> bulkDynamics2 (
+ converter.getLatticeRelaxationFrequency(), gama,
+ instances::getBulkMomenta<T,DESCRIPTOR>() );
+
+ sOnLatticeBoundaryCondition3D<T,DESCRIPTOR> sOnBC1( sLattice1 );
+ sOnLatticeBoundaryCondition3D<T,DESCRIPTOR> sOnBC2( sLattice2 );
+ createLocalBoundaryCondition3D<T,DESCRIPTOR> (sOnBC1);
+ createLocalBoundaryCondition3D<T,DESCRIPTOR> (sOnBC2);
+
+ prepareLattice( sLattice1, sLattice2, bulkDynamics1, bulkDynamics2,
+ converter, superGeometry, sOnBC1, sOnBC2 );
+
+ prepareCoupling( sLattice1, sLattice2, superGeometry);
+
+ SuperExternal3D<T, DESCRIPTOR,CHEM_POTENTIAL> sExternal1 (superGeometry, sLattice1, sLattice1.getOverlap() );
+ SuperExternal3D<T, DESCRIPTOR,CHEM_POTENTIAL> sExternal2 (superGeometry, sLattice2, sLattice2.getOverlap() );
+
+ // === 4th Step: Main Loop with Timer ===
+ int iT = 0;
+ clout << "starting simulation..." << endl;
+ Timer<T> timer( maxIter, superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ for ( iT=0; iT<=maxIter; ++iT ) {
+ // Computation and output of the results
+ getResults( sLattice1, sLattice2, iT, superGeometry, timer, converter );
+
+ // Collide and stream execution
+ sLattice1.collideAndStream();
+ sLattice2.collideAndStream();
+
+ // MPI communication for lattice data
+ sLattice1.communicate();
+ sLattice2.communicate();
+
+ // Execute coupling between the two lattices
+ sLattice1.executeCoupling();
+ sExternal1.communicate();
+ sExternal2.communicate();
+ sLattice2.executeCoupling();
+ }
+
+ timer.stop();
+ timer.printSummary();
+
+}
+