summaryrefslogtreecommitdiff
path: root/examples/multiComponent/microFluidics2d/microFluidics2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/multiComponent/microFluidics2d/microFluidics2d.cpp')
-rw-r--r--examples/multiComponent/microFluidics2d/microFluidics2d.cpp456
1 files changed, 456 insertions, 0 deletions
diff --git a/examples/multiComponent/microFluidics2d/microFluidics2d.cpp b/examples/multiComponent/microFluidics2d/microFluidics2d.cpp
new file mode 100644
index 0000000..7ebf883
--- /dev/null
+++ b/examples/multiComponent/microFluidics2d/microFluidics2d.cpp
@@ -0,0 +1,456 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2019 Sam Avis
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* microfluidics2d.cpp:
+ * This example shows a microfluidic channel creating droplets of
+ * two fluid components. Poiseuille velocity profiles are imposed
+ * at the various channel inlets, while a constant density outlet
+ * is imposed at the end of the channel to allow the droplets to
+ * exit the simulation.
+ *
+ * This example demonstrates the use of three fluid components
+ * with the free energy model. It also shows the use of open
+ * boundary conditions, specifically velocity inlet and density
+ * outlet boundaries.
+ */
+
+#include "olb2D.h"
+#include "olb2D.hh" // use only generic version!
+#include <cstdlib>
+#include <iostream>
+#include <fstream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D2Q9<CHEM_POTENTIAL,FORCE>
+
+// Parameters for the simulation setup
+const int N = 100;
+const T nx = 800.;
+const T ny = 100.;
+const T dx = ny / N;
+
+const T inSize = 175.;
+const T xl1 = inSize * 2./7.;
+const T yl1 = ny / 4.;
+const T xl2 = inSize / 7.;
+const T yl2 = ny;
+const T xl3 = inSize * 3./7.;
+const T yl3 = ny / 4.;
+const T xl4 = inSize / 7.;
+const T yl4 = ny;
+const T xl5 = nx - inSize;
+const T yl5 = ny / 2.;
+
+const T inlet1Velocity = 0.00056; // [lattice units]
+const T inlet2Velocity = 0.00055; // [lattice units]
+const T inlet3Velocity = 0.0014; // [lattice units]
+const T outletDensity = 1.; // [lattice units]
+const T alpha = 1.; // Interfacial width [lattice units]
+const T kappa1 = 0.0132; // For surface tensions [lattice units]
+const T kappa2 = 0.0012; // For surface tensions [lattice units]
+const T kappa3 = 0.0013; // For surface tensions [lattice units]
+const T gama = 1.; // For mobility of interfaces [lattice units]
+const T h1 = 0.; // Contact angle 90 degrees [lattice units]
+const T h2 = 0.; // Contact angle 90 degrees [lattice units]
+const T h3 = 0.; // Contact angle 90 degrees [lattice units]
+
+const int maxIter = 1000000;
+const int vtkIter = 1000;
+const int statIter = 2000;
+
+
+void prepareGeometry( SuperGeometry2D<T>& superGeometry ) {
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ std::shared_ptr<IndicatorF2D<T>> section1 = std::make_shared<IndicatorCuboid2D<T>>( xl1, yl1, std::vector<T>{xl1/2., ny/2.} );
+ std::shared_ptr<IndicatorF2D<T>> section2 = std::make_shared<IndicatorCuboid2D<T>>( xl2, yl2, std::vector<T>{xl1 + xl2/2., ny/2.} );
+ std::shared_ptr<IndicatorF2D<T>> section3 = std::make_shared<IndicatorCuboid2D<T>>( xl3, yl3, std::vector<T>{xl1 + xl2 + xl3/2., ny/2.} );
+ std::shared_ptr<IndicatorF2D<T>> section4 = std::make_shared<IndicatorCuboid2D<T>>( xl4, yl4, std::vector<T>{xl1 + xl2 + xl3 + xl4/2., ny/2.} );
+ std::shared_ptr<IndicatorF2D<T>> section5 = std::make_shared<IndicatorCuboid2D<T>>( xl5, yl5, std::vector<T>{xl1 + xl2 + xl3 + xl4 + xl5/2., ny/2.} );
+ IndicatorIdentity2D<T> channel( section1 + section2 + section3 + section4 + section5 );
+
+ superGeometry.rename( 0, 2, channel );
+ superGeometry.rename( 2,1,1,1 );
+
+ // Inlets and outlet
+ IndicatorCuboid2D<T> inlet1 ( dx, yl1, {0., ny/2.} );
+ IndicatorCuboid2D<T> inlet21( xl2 - dx, dx, {xl1 + xl2/2., 0.} );
+ IndicatorCuboid2D<T> inlet22( xl2 - dx, dx, {xl1 + xl2/2., ny} );
+ IndicatorCuboid2D<T> inlet31( xl4 - dx, dx, {xl1 + xl2 + xl3 + xl4/2., 0.} );
+ IndicatorCuboid2D<T> inlet32( xl4 - dx, dx, {xl1 + xl2 + xl3 + xl4/2., ny} );
+ IndicatorCuboid2D<T> outlet( dx, yl5, {nx, ny/2.} );
+ superGeometry.rename( 2, 3, 1, inlet1 );
+ superGeometry.rename( 2, 4, 1, inlet21 );
+ superGeometry.rename( 2, 5, 1, inlet22 );
+ superGeometry.rename( 2, 6, 1, inlet31 );
+ superGeometry.rename( 2, 7, 1, inlet32 );
+ superGeometry.rename( 2, 8, 1, outlet );
+
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+
+void prepareLattice( SuperLattice2D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice2,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice3,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics1,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics2,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics3,
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sOnBC1,
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sOnBC2,
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sOnBC3,
+ UnitConverter<T, DESCRIPTOR>& converter,
+ SuperGeometry2D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ // define lattice dynamics
+ sLattice1.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 1, &bulkDynamics1 );
+ sLattice2.defineDynamics( superGeometry, 1, &bulkDynamics2 );
+ sLattice3.defineDynamics( superGeometry, 1, &bulkDynamics3 );
+
+ sLattice1.defineDynamics( superGeometry, 2, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 2, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 2, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 3, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 3, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 3, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 4, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 4, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 4, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 5, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 5, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 5, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 6, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 6, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 6, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 7, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 7, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 7, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 8, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 8, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice3.defineDynamics( superGeometry, 8, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ // add wall boundary
+ sOnBC1.addFreeEnergyWallBoundary( superGeometry, 2, alpha, kappa1, kappa2, kappa3, h1, h2, h3, 1 );
+ sOnBC2.addFreeEnergyWallBoundary( superGeometry, 2, alpha, kappa1, kappa2, kappa3, h1, h2, h3, 2 );
+ sOnBC3.addFreeEnergyWallBoundary( superGeometry, 2, alpha, kappa1, kappa2, kappa3, h1, h2, h3, 3 );
+
+ // add inlet boundaries
+ T omega = converter.getLatticeRelaxationFrequency();
+ auto inlet1Indicator = superGeometry.getMaterialIndicator(3);
+ sOnBC1.addFreeEnergyInletBoundary( inlet1Indicator, omega, "velocity", 1 );
+ sOnBC2.addFreeEnergyInletBoundary( inlet1Indicator, omega, "velocity", 2 );
+ sOnBC3.addFreeEnergyInletBoundary( inlet1Indicator, omega, "velocity", 3 );
+
+ auto inlet2Indicator = superGeometry.getMaterialIndicator({4, 5});
+ sOnBC1.addFreeEnergyInletBoundary( inlet2Indicator, omega, "velocity", 1 );
+ sOnBC2.addFreeEnergyInletBoundary( inlet2Indicator, omega, "velocity", 2 );
+ sOnBC3.addFreeEnergyInletBoundary( inlet2Indicator, omega, "velocity", 3 );
+
+ auto inlet3Indicator = superGeometry.getMaterialIndicator({6, 7});
+ sOnBC1.addFreeEnergyInletBoundary( inlet3Indicator, omega, "velocity", 1 );
+ sOnBC2.addFreeEnergyInletBoundary( inlet3Indicator, omega, "velocity", 2 );
+ sOnBC3.addFreeEnergyInletBoundary( inlet3Indicator, omega, "velocity", 3 );
+
+ // add outlet boundary
+ auto outletIndicator = superGeometry.getMaterialIndicator(8);
+ sOnBC1.addFreeEnergyOutletBoundary( outletIndicator, omega, "density", 1 );
+ sOnBC2.addFreeEnergyOutletBoundary( outletIndicator, omega, "density", 2 );
+ sOnBC3.addFreeEnergyOutletBoundary( outletIndicator, omega, "density", 3 );
+
+ // bulk initial conditions
+ std::vector<T> v( 2,T() );
+ AnalyticalConst2D<T,T> zeroVelocity( v );
+
+ AnalyticalConst2D<T,T> zero ( 0. );
+ AnalyticalConst2D<T,T> one ( 1. );
+ SmoothIndicatorCuboid2D<T,T> section1( {xl1/2., ny/2.}, xl1+dx, ny, 0. );
+ SmoothIndicatorCuboid2D<T,T> section2( {xl1 + (xl2 + xl3)/2., ny/2.}, xl2 + xl3, ny, 0. );
+
+ AnalyticalIdentity2D<T,T> c1( section1 );
+ AnalyticalIdentity2D<T,T> c2( section2 );
+ AnalyticalIdentity2D<T,T> rho( one );
+ AnalyticalIdentity2D<T,T> phi( c1 - c2 );
+ AnalyticalIdentity2D<T,T> psi( rho - c1 - c2 );
+
+ auto allIndicator = superGeometry.getMaterialIndicator({1, 2, 3, 4, 5, 6});
+ sLattice1.iniEquilibrium( allIndicator, rho, zeroVelocity );
+ sLattice2.iniEquilibrium( allIndicator, phi, zeroVelocity );
+ sLattice3.iniEquilibrium( allIndicator, psi, zeroVelocity );
+
+ // inlet boundary conditions
+ Poiseuille2D<T> inlet1U( superGeometry, 3, 1.5*inlet1Velocity, 0. );
+ sLattice1.defineU( inlet1Indicator, inlet1U );
+ sLattice2.defineRho( inlet1Indicator, phi );
+ sLattice3.defineRho( inlet1Indicator, psi );
+
+ Poiseuille2D<T> inlet21U( superGeometry, 4, 1.5*inlet2Velocity, 0. );
+ Poiseuille2D<T> inlet22U( superGeometry, 5, 1.5*inlet2Velocity, 0. );
+ sLattice1.defineU( superGeometry, 4, inlet21U );
+ sLattice1.defineU( superGeometry, 5, inlet22U );
+ sLattice2.defineRho( inlet2Indicator, phi );
+ sLattice3.defineRho( inlet2Indicator, psi );
+
+ Poiseuille2D<T> inlet31U( superGeometry, 6, 1.5*inlet3Velocity, 0. );
+ Poiseuille2D<T> inlet32U( superGeometry, 7, 1.5*inlet3Velocity, 0. );
+ sLattice1.defineU( superGeometry, 6, inlet31U );
+ sLattice1.defineU( superGeometry, 7, inlet32U );
+ sLattice2.defineRho( inlet3Indicator, phi );
+ sLattice3.defineRho( inlet3Indicator, psi );
+
+ // outlet initial / boundary conditions
+ AnalyticalConst2D<T,T> rhoOutlet( outletDensity );
+ AnalyticalIdentity2D<T,T> phiOutlet( zero );
+ AnalyticalIdentity2D<T,T> psiOutlet( rhoOutlet );
+ sLattice1.defineRho( outletIndicator, rhoOutlet );
+ sLattice2.defineRho( outletIndicator, phiOutlet );
+ sLattice3.defineRho( outletIndicator, psiOutlet );
+
+ // initialise lattices
+ sLattice1.initialize();
+ sLattice2.initialize();
+ sLattice3.initialize();
+
+ sLattice1.communicate();
+ sLattice2.communicate();
+ sLattice3.communicate();
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+
+void prepareCoupling(SuperLattice2D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice2,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice3,
+ SuperGeometry2D<T>& superGeometry) {
+ OstreamManager clout( std::cout,"prepareCoupling" );
+ clout << "Add lattice coupling" << endl;
+
+ // Bulk couplings
+ FreeEnergyChemicalPotentialGenerator2D<T,DESCRIPTOR> coupling2( alpha, kappa1, kappa2, kappa3 );
+ FreeEnergyForceGenerator2D<T,DESCRIPTOR> coupling3;
+
+ // Inlet / outlet couplings
+ FreeEnergyDensityOutletGenerator2D<T,DESCRIPTOR> coupling1( outletDensity );
+ FreeEnergyInletOutletGenerator2D<T,DESCRIPTOR> coupling4;
+
+ // The DensityOutlet coupling must be added to the first lattice and come before the ChemicalPotential coupling
+ // The InletOutlet couplings must be added to the second lattice and come after the Force coupling.
+ sLattice1.addLatticeCoupling<DESCRIPTOR>( superGeometry, 8, coupling1, {&sLattice2, &sLattice3} );
+
+ sLattice1.addLatticeCoupling<DESCRIPTOR>( superGeometry, 1, coupling2, {&sLattice2, &sLattice3} );
+ sLattice2.addLatticeCoupling<DESCRIPTOR>( superGeometry, 1, coupling3, {&sLattice1, &sLattice3} );
+
+ sLattice2.addLatticeCoupling<DESCRIPTOR>( superGeometry, 3, coupling4, {&sLattice1, &sLattice3} );
+ sLattice2.addLatticeCoupling<DESCRIPTOR>( superGeometry, 4, coupling4, {&sLattice1, &sLattice3} );
+ sLattice2.addLatticeCoupling<DESCRIPTOR>( superGeometry, 5, coupling4, {&sLattice1, &sLattice3} );
+ sLattice2.addLatticeCoupling<DESCRIPTOR>( superGeometry, 6, coupling4, {&sLattice1, &sLattice3} );
+ sLattice2.addLatticeCoupling<DESCRIPTOR>( superGeometry, 7, coupling4, {&sLattice1, &sLattice3} );
+ sLattice2.addLatticeCoupling<DESCRIPTOR>( superGeometry, 8, coupling4, {&sLattice1, &sLattice3} );
+
+ clout << "Add lattice coupling ... OK!" << endl;
+}
+
+
+void getResults( SuperLattice2D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice2,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice3, int iT,
+ SuperGeometry2D<T>& superGeometry, Timer<T>& timer,
+ UnitConverter<T, DESCRIPTOR> converter) {
+
+ OstreamManager clout( std::cout,"getResults" );
+ SuperVTMwriter2D<T> vtmWriter( "microFluidics2d" );
+
+ if ( iT==0 ) {
+ // Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry2D<T, DESCRIPTOR> geometry( sLattice1, superGeometry );
+ SuperLatticeCuboid2D<T, DESCRIPTOR> cuboid( sLattice1 );
+ SuperLatticeRank2D<T, DESCRIPTOR> rank( sLattice1 );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+ vtmWriter.createMasterFile();
+ }
+
+ // Get statistics
+ if ( iT%statIter==0 ) {
+ // Timer console output
+ timer.update( iT );
+ timer.printStep();
+ sLattice1.getStatistics().print( iT, converter.getPhysTime(iT) );
+ sLattice2.getStatistics().print( iT, converter.getPhysTime(iT) );
+ sLattice3.getStatistics().print( iT, converter.getPhysTime(iT) );
+ }
+
+ // Writes the VTK files
+ if ( iT%vtkIter==0 ) {
+ SuperLatticeVelocity2D<T, DESCRIPTOR> velocity( sLattice1 );
+ SuperLatticeDensity2D<T, DESCRIPTOR> density1( sLattice1 );
+ density1.getName() = "rho";
+ SuperLatticeDensity2D<T, DESCRIPTOR> density2( sLattice2 );
+ density2.getName() = "phi";
+ SuperLatticeDensity2D<T, DESCRIPTOR> density3( sLattice3 );
+ density3.getName() = "density-fluid-3";
+
+ AnalyticalConst2D<T,T> half_( 0.5 );
+ SuperLatticeFfromAnalyticalF2D<T, DESCRIPTOR> half(half_, sLattice1);
+
+ SuperIdentity2D<T,T> c1 (half*(density1+density2-density3));
+ c1.getName() = "density-fluid-1";
+ SuperIdentity2D<T,T> c2 (half*(density1-density2-density3));
+ c2.getName() = "density-fluid-2";
+
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( density1 );
+ vtmWriter.addFunctor( density2 );
+ vtmWriter.addFunctor( density3 );
+ vtmWriter.addFunctor( c1 );
+ vtmWriter.addFunctor( c2 );
+ vtmWriter.write( iT );
+ }
+}
+
+
+int main( int argc, char *argv[] ) {
+
+ // === 1st Step: Initialization ===
+
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+
+ UnitConverterFromResolutionAndRelaxationTime<T,DESCRIPTOR> converter(
+ (T) N, // resolution
+ (T) 1., // lattice relaxation time (tau)
+ (T) ny, // charPhysLength: reference length of simulation geometry
+ (T) 1.e-6, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) 0.1, // physViscosity: physical kinematic viscosity in __m^2 / s__
+ (T) 1. // physDensity: physical density in __kg / m^3__
+ );
+
+ // Prints the converter log as console output
+ converter.print();
+
+ // === 2nd Step: Prepare Geometry ===
+ std::vector<T> extend = { nx, ny };
+ std::vector<T> origin = { 0, 0 };
+ IndicatorCuboid2D<T> cuboid(extend,origin);
+#ifdef PARALLEL_MODE_MPI
+ CuboidGeometry2D<T> cGeometry( cuboid, converter.getPhysDeltaX(), singleton::mpi().getSize() );
+#else
+ CuboidGeometry2D<T> cGeometry( cuboid, converter.getPhysDeltaX() );
+#endif
+
+ // Instantiation of loadbalancer
+ HeuristicLoadBalancer<T> loadBalancer( cGeometry );
+ loadBalancer.print();
+
+ // Instantiation of superGeometry
+ SuperGeometry2D<T> superGeometry( cGeometry,loadBalancer );
+
+ prepareGeometry( superGeometry );
+
+ // === 3rd Step: Prepare Lattice ===
+ SuperLattice2D<T, DESCRIPTOR> sLattice1( superGeometry );
+ SuperLattice2D<T, DESCRIPTOR> sLattice2( superGeometry );
+ SuperLattice2D<T, DESCRIPTOR> sLattice3( superGeometry );
+
+ ForcedBGKdynamics<T, DESCRIPTOR> bulkDynamics1 (
+ converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,DESCRIPTOR>() );
+
+ FreeEnergyBGKdynamics<T, DESCRIPTOR> bulkDynamics23 (
+ converter.getLatticeRelaxationFrequency(), gama,
+ instances::getBulkMomenta<T,DESCRIPTOR>() );
+
+ sOnLatticeBoundaryCondition2D<T, DESCRIPTOR> sOnBC1( sLattice1 );
+ sOnLatticeBoundaryCondition2D<T, DESCRIPTOR> sOnBC2( sLattice2 );
+ sOnLatticeBoundaryCondition2D<T, DESCRIPTOR> sOnBC3( sLattice3 );
+ createLocalBoundaryCondition2D<T, DESCRIPTOR> (sOnBC1);
+ createLocalBoundaryCondition2D<T, DESCRIPTOR> (sOnBC2);
+ createLocalBoundaryCondition2D<T, DESCRIPTOR> (sOnBC3);
+
+ prepareLattice( sLattice1, sLattice2, sLattice3, bulkDynamics1, bulkDynamics23,
+ bulkDynamics23, sOnBC1, sOnBC2, sOnBC3, converter, superGeometry );
+
+ prepareCoupling( sLattice1, sLattice2, sLattice3, superGeometry );
+
+ SuperExternal2D<T,DESCRIPTOR,CHEM_POTENTIAL> sExternal1 (superGeometry, sLattice1, sLattice1.getOverlap() );
+ SuperExternal2D<T,DESCRIPTOR,CHEM_POTENTIAL> sExternal2 (superGeometry, sLattice2, sLattice2.getOverlap() );
+ SuperExternal2D<T,DESCRIPTOR,CHEM_POTENTIAL> sExternal3 (superGeometry, sLattice3, sLattice3.getOverlap() );
+
+ // === 4th Step: Main Loop with Timer ===
+ int iT = 0;
+ clout << "starting simulation..." << endl;
+ Timer<T> timer( maxIter, superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ for ( iT=0; iT<maxIter; ++iT ) {
+ // Computation and output of the results
+ getResults( sLattice1, sLattice2, sLattice3, iT, superGeometry, timer, converter );
+
+ // Collide and stream execution
+ sLattice1.collideAndStream();
+ sLattice2.collideAndStream();
+ sLattice3.collideAndStream();
+
+ // MPI communication for lattice data
+ sLattice1.communicate();
+ sLattice2.communicate();
+ sLattice3.communicate();
+
+ // Execute coupling between the two lattices
+ sLattice1.executeCoupling();
+ sExternal1.communicate();
+ sExternal2.communicate();
+ sExternal3.communicate();
+ sLattice2.executeCoupling();
+ }
+
+ timer.stop();
+ timer.printSummary();
+
+}