summaryrefslogtreecommitdiff
path: root/examples/multiComponent/phaseSeparation3d/phaseSeparation3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/multiComponent/phaseSeparation3d/phaseSeparation3d.cpp')
-rw-r--r--examples/multiComponent/phaseSeparation3d/phaseSeparation3d.cpp217
1 files changed, 217 insertions, 0 deletions
diff --git a/examples/multiComponent/phaseSeparation3d/phaseSeparation3d.cpp b/examples/multiComponent/phaseSeparation3d/phaseSeparation3d.cpp
new file mode 100644
index 0000000..57f0a43
--- /dev/null
+++ b/examples/multiComponent/phaseSeparation3d/phaseSeparation3d.cpp
@@ -0,0 +1,217 @@
+/* This file is part of the OpenLB library
+ *
+ * Copyright (C) 2014 Peter Weisbrod
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+/* phaseSeparation3d.cpp:
+ * In this example the simulation is initialized with a given
+ * density plus a small random number all over the domain. This
+ * condition is unstable and leads to liquid-vapor phase separation.
+ * Boundaries are assumed to be periodic. This example shows the
+ * usage of multiphase flow.
+ */
+
+
+#include "olb3D.h"
+#include "olb3D.hh" // use only generic version!
+#include <cstdlib>
+#include <iostream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR ShanChenDynOmegaForcedD3Q19Descriptor
+
+
+// Parameters for the simulation setup
+const int maxIter = 2000;
+const int nx = 76;
+const int ny = 76;
+const int nz = 76;
+
+
+// Stores geometry information in form of material numbers
+void prepareGeometry( SuperGeometry3D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ // Sets material number for fluid
+ superGeometry.rename( 0,1 );
+
+ // Removes all not needed boundary voxels outside the surface
+ superGeometry.clean();
+ // Removes all not needed boundary voxels inside the surface
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+// Set up the geometry of the simulation
+void prepareLattice( SuperLattice3D<T, DESCRIPTOR>& sLattice,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics1,
+ SuperGeometry3D<T>& superGeometry ) {
+
+ // Material=1 -->bulk dynamics
+ sLattice.defineDynamics( superGeometry, 1, &bulkDynamics1 );
+
+ // Initial conditions
+ AnalyticalConst3D<T,T> noise( .01 );
+ std::vector<T> v( 3,T() );
+ AnalyticalConst3D<T,T> zeroVelocity( v );
+ AnalyticalConst3D<T,T> oldRho( .125 );
+ AnalyticalRandom3D<T,T> random;
+ AnalyticalIdentity3D<T,T> newRho( random*noise+oldRho );
+
+ // Initialize all values of distribution functions to their local equilibrium
+ sLattice.defineRhoU( superGeometry, 1, newRho, zeroVelocity );
+ sLattice.iniEquilibrium( superGeometry, 1, newRho, zeroVelocity );
+
+ // Make the lattice ready for simulation
+ sLattice.initialize();
+}
+
+// Output to console and files
+void getResults( SuperLattice3D<T, DESCRIPTOR>& sLattice, int iT,
+ SuperGeometry3D<T>& superGeometry, Timer<T>& timer ) {
+
+ OstreamManager clout( std::cout,"getResults" );
+
+ SuperVTMwriter3D<T> vtmWriter( "phaseSeparation3d" );
+ SuperLatticeVelocity3D<T, DESCRIPTOR> velocity( sLattice );
+ SuperLatticeDensity3D<T, DESCRIPTOR> density( sLattice );
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( density );
+
+ const int vtkIter = 20;
+ const int statIter = 20;
+
+ if ( iT==0 ) {
+ // Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry3D<T, DESCRIPTOR> geometry( sLattice, superGeometry );
+ SuperLatticeCuboid3D<T, DESCRIPTOR> cuboid( sLattice );
+ SuperLatticeRank3D<T, DESCRIPTOR> rank( sLattice );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+
+ vtmWriter.createMasterFile();
+ }
+
+ // Writes the vtk files
+ if ( iT%vtkIter==0 ) {
+ clout << "Writing VTK and JPEG..." << std::endl;
+ vtmWriter.write( iT );
+
+ BlockReduction3D2D<T> planeReduction( density, {0, 0, 1} );
+ // write output as JPEG
+ heatmap::write(planeReduction, iT);
+ }
+
+ // Writes output on the console
+ if ( iT%statIter==0 ) {
+ // Timer console output
+ timer.update( iT );
+ timer.printStep();
+
+ // Lattice statistics console output
+ sLattice.getStatistics().print( iT,iT );
+ }
+}
+
+int main( int argc, char *argv[] ) {
+
+ // === 1st Step: Initialization ===
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+ // display messages from every single mpi process
+ //clout.setMultiOutput(true);
+
+ const T omega1 = 1.0;
+ const T G = -1.;
+
+ // === 2rd Step: Prepare Geometry ===
+
+ // Instantiation of a cuboidGeometry with weights
+#ifdef PARALLEL_MODE_MPI
+ const int noOfCuboids = singleton::mpi().getSize();
+#else
+ const int noOfCuboids = 1;
+#endif
+ CuboidGeometry3D<T> cuboidGeometry( 0, 0, 0, 1, nx, ny, nz, noOfCuboids );
+
+ // Periodic boundaries in x- and y- and z-direction
+ cuboidGeometry.setPeriodicity( true, true, true );
+
+ // Instantiation of a loadBalancer
+ HeuristicLoadBalancer<T> loadBalancer( cuboidGeometry );
+
+ // Instantiation of a superGeometry
+ SuperGeometry3D<T> superGeometry( cuboidGeometry,loadBalancer,2 );
+
+ prepareGeometry( superGeometry );
+
+ // === 3rd Step: Prepare Lattice ===
+ SuperLattice3D<T, DESCRIPTOR> sLattice( superGeometry );
+
+ ForcedShanChenBGKdynamics<T, DESCRIPTOR> bulkDynamics1 (
+ omega1, instances::getExternalVelocityMomenta<T,DESCRIPTOR>() );
+
+ std::vector<T> rho0;
+ rho0.push_back( 1 );
+ rho0.push_back( 1 );
+ CarnahanStarling<T,T> interactionPotential( G );
+ ShanChenForcedSingleComponentGenerator3D<T,DESCRIPTOR> coupling( G,rho0,interactionPotential );
+
+ sLattice.addLatticeCoupling( coupling, sLattice );
+
+ prepareLattice( sLattice, bulkDynamics1, superGeometry );
+
+ // === 4th Step: Main Loop ===
+ int iT = 0;
+ clout << "starting simulation..." << endl;
+ Timer<T> timer( maxIter, superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ for ( iT = 0; iT < maxIter; ++iT ) {
+
+ // === 5th Step: Definition of Initial and Boundary Conditions ===
+ // in this application no boundary conditions have to be adjusted
+
+ // === 6th Step: Collide and Stream Execution ===
+ sLattice.collideAndStream();
+ sLattice.communicate();
+ sLattice.executeCoupling();
+
+ // === 7th Step: Computation and Output of the Results ===
+ getResults( sLattice, iT, superGeometry, timer );
+ }
+
+ timer.stop();
+ timer.printSummary();
+}