summaryrefslogtreecommitdiff
path: root/examples/multiComponent/rayleighTaylor3d/rayleighTaylor3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/multiComponent/rayleighTaylor3d/rayleighTaylor3d.cpp')
-rw-r--r--examples/multiComponent/rayleighTaylor3d/rayleighTaylor3d.cpp312
1 files changed, 312 insertions, 0 deletions
diff --git a/examples/multiComponent/rayleighTaylor3d/rayleighTaylor3d.cpp b/examples/multiComponent/rayleighTaylor3d/rayleighTaylor3d.cpp
new file mode 100644
index 0000000..59a87a1
--- /dev/null
+++ b/examples/multiComponent/rayleighTaylor3d/rayleighTaylor3d.cpp
@@ -0,0 +1,312 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2008 Orestis Malaspinas, Andrea Parmigiani
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* rayleighTaylor3d.cpp:
+ * Rayleigh-Taylor instability in 3D, generated by a heavy
+ * fluid penetrating a light one. The multi-component fluid model
+ * by X. Shan and H. Chen is used. This example shows the usage
+ * of multicomponent flow and periodic boundaries.
+ */
+
+
+#include "olb3D.h"
+#include "olb3D.hh" // use only generic version!
+#include <cstdlib>
+#include <iostream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR ShanChenDynOmegaForcedD3Q19Descriptor
+
+
+// Parameters for the simulation setup
+const int nx = 70;
+const int ny = 35;
+const int nz = 70;
+const int maxIter = 4000;
+
+
+// Stores geometry information in form of material numbers
+void prepareGeometry( SuperGeometry3D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ // Sets material number for fluid and boundary
+ superGeometry.rename( 0,1 );
+
+ Vector<T,3> origin1( -2. );
+ Vector<T,3> origin2( -2., ny/2., -2. );
+ Vector<T,3> origin3( -2., ny-1., -2. );
+ Vector<T,3> extend1( nx+3., 2., nz+3. );
+ Vector<T,3> extend2( nx+3., ny/2+2., nz+3. );
+
+ IndicatorCuboid3D<T> bottom( extend1, origin1 );
+ IndicatorCuboid3D<T> upper( extend2, origin2 );
+ IndicatorCuboid3D<T> top( extend1, origin3 );
+
+ superGeometry.rename( 1,2,upper );
+ superGeometry.rename( 1,3,bottom );
+ superGeometry.rename( 2,4,top );
+
+ // Removes all not needed boundary voxels outside the surface
+ //superGeometry.clean();
+ // Removes all not needed boundary voxels inside the surface
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+
+void prepareLattice( SuperLattice3D<T, DESCRIPTOR>& sLatticeOne,
+ SuperLattice3D<T, DESCRIPTOR>& sLatticeTwo,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics1,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics2,
+ Dynamics<T, DESCRIPTOR>& bounceBackRho0,
+ Dynamics<T, DESCRIPTOR>& bounceBackRho1,
+ SuperGeometry3D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ // The setup is: periodicity along horizontal direction, bounce-back on top
+ // and bottom. The upper half is initially filled with fluid 1 + random noise,
+ // and the lower half with fluid 2. Only fluid 1 experiences a forces,
+ // directed downwards.
+
+ // define lattice Dynamics
+ sLatticeOne.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLatticeTwo.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLatticeOne.defineDynamics( superGeometry, 1, &bulkDynamics1 );
+ sLatticeOne.defineDynamics( superGeometry, 2, &bulkDynamics1 );
+ sLatticeOne.defineDynamics( superGeometry, 3, &bulkDynamics1 );
+ sLatticeOne.defineDynamics( superGeometry, 4, &bulkDynamics1 );
+ sLatticeTwo.defineDynamics( superGeometry, 1, &bulkDynamics2 );
+ sLatticeTwo.defineDynamics( superGeometry, 2, &bulkDynamics2 );
+ sLatticeTwo.defineDynamics( superGeometry, 3, &bulkDynamics2 );
+ sLatticeTwo.defineDynamics( superGeometry, 4, &bulkDynamics2 );
+
+ sLatticeOne.defineDynamics( superGeometry, 3, &bounceBackRho0 );
+ sLatticeTwo.defineDynamics( superGeometry, 3, &bounceBackRho1 );
+ sLatticeOne.defineDynamics( superGeometry, 4, &bounceBackRho1 );
+ sLatticeTwo.defineDynamics( superGeometry, 4, &bounceBackRho0 );
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+void setBoundaryValues( SuperLattice3D<T, DESCRIPTOR>& sLatticeOne,
+ SuperLattice3D<T, DESCRIPTOR>& sLatticeTwo,
+ T force, int iT, SuperGeometry3D<T>& superGeometry ) {
+
+ if ( iT==0 ) {
+
+ AnalyticalConst3D<T,T> noise( 4.e-2 );
+ std::vector<T> v( 3,T() );
+ AnalyticalConst3D<T,T> zeroV( v );
+ AnalyticalConst3D<T,T> zero( 0. );
+ AnalyticalLinear3D<T,T> one( 0.,-force*descriptors::invCs2<T,DESCRIPTOR>(),0.,0.98+force*ny*descriptors::invCs2<T,DESCRIPTOR>() );
+ AnalyticalConst3D<T,T> onePlus( 0.98+force*ny/2.*descriptors::invCs2<T,DESCRIPTOR>() );
+ AnalyticalRandom3D<T,T> random;
+ AnalyticalIdentity3D<T,T> randomOne( random*noise+one );
+ AnalyticalIdentity3D<T,T> randomPlus( random*noise+onePlus );
+ std::vector<T> F( 3,T() );
+ F[1] = -force;
+ AnalyticalConst3D<T,T> f( F );
+
+ // for each material set the defineRhou and the Equilibrium
+
+ sLatticeOne.defineRhoU( superGeometry, 1, zero, zeroV );
+ sLatticeOne.iniEquilibrium( superGeometry, 1, zero, zeroV );
+ sLatticeOne.defineField<descriptors::EXTERNAL_FORCE>( superGeometry, 1, f );
+ sLatticeTwo.defineRhoU( superGeometry, 1, randomPlus, zeroV );
+ sLatticeTwo.iniEquilibrium( superGeometry, 1, randomPlus, zeroV );
+
+ sLatticeOne.defineRhoU( superGeometry, 2, randomOne, zeroV );
+ sLatticeOne.iniEquilibrium( superGeometry, 2, randomOne, zeroV );
+ sLatticeOne.defineField<descriptors::EXTERNAL_FORCE>( superGeometry, 2, f );
+ sLatticeTwo.defineRhoU( superGeometry, 2, zero, zeroV );
+ sLatticeTwo.iniEquilibrium( superGeometry, 2, zero, zeroV );
+
+ /*sLatticeOne.defineRhoU(superGeometry, 3, zero, zeroV);
+ sLatticeOne.iniEquilibrium(superGeometry, 3, zero, zeroV);
+ sLatticeOne.defineField<descriptors:::EXTERNAL_FORCE>(superGeometry, 3, f);
+ sLatticeTwo.defineRhoU(superGeometry, 3, one, zeroV);
+ sLatticeTwo.iniEquilibrium(superGeometry, 3, one, zeroV);
+
+ sLatticeOne.defineRhoU(superGeometry, 4, one, zeroV);
+ sLatticeOne.iniEquilibrium(superGeometry, 4, one, zeroV);
+ sLatticeOne.defineField<descriptors:::EXTERNAL_FORCE>(superGeometry, 4, f);
+ sLatticeTwo.defineRhoU(superGeometry, 4, zero, zeroV);
+ sLatticeTwo.iniEquilibrium(superGeometry, 4, zero, zeroV);*/
+
+ // Make the lattice ready for simulation
+ sLatticeOne.initialize();
+ sLatticeTwo.initialize();
+ }
+}
+
+void getResults( SuperLattice3D<T, DESCRIPTOR>& sLatticeTwo,
+ SuperLattice3D<T, DESCRIPTOR>& sLatticeOne, int iT,
+ SuperGeometry3D<T>& superGeometry, Timer<T>& timer ) {
+
+ OstreamManager clout( std::cout,"getResults" );
+ SuperVTMwriter3D<T> vtmWriter( "rayleighTaylor3dsLatticeOne" );
+
+ const int vtkIter = 50;
+ const int statIter = 10;
+
+ if ( iT==0 ) {
+ // Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry3D<T, DESCRIPTOR> geometry( sLatticeOne, superGeometry );
+ SuperLatticeCuboid3D<T, DESCRIPTOR> cuboid( sLatticeOne );
+ SuperLatticeRank3D<T, DESCRIPTOR> rank( sLatticeOne );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+ vtmWriter.createMasterFile();
+ }
+
+ // Get statistics
+ if ( iT%statIter==0 && iT > 0 ) {
+ // Timer console output
+ timer.update( iT );
+ timer.printStep();
+
+ clout << "averageRhoFluidOne=" << sLatticeOne.getStatistics().getAverageRho();
+ clout << "; averageRhoFluidTwo=" << sLatticeTwo.getStatistics().getAverageRho() << std::endl;
+ }
+
+ // Writes the VTK files
+ if ( iT%vtkIter==0 ) {
+ clout << "Writing VTK ..." << std::endl;
+ SuperLatticeVelocity3D<T, DESCRIPTOR> velocity( sLatticeOne );
+ SuperLatticeDensity3D<T, DESCRIPTOR> density( sLatticeOne );
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( density );
+ vtmWriter.write( iT );
+
+ BlockReduction3D2D<T> planeReduction( density, {0, 0, 1} );
+ // write output as JPEG
+ heatmap::write(planeReduction, iT);
+
+ clout << "Writing VTK ... OK" << std::endl;
+ }
+}
+
+
+int main( int argc, char *argv[] ) {
+
+ // === 1st Step: Initialization ===
+
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+
+ const T omega1 = 1.0;
+ const T omega2 = 1.0;
+ const T G = 3.;
+ T force = 7./( T )ny/( T )ny;
+
+ // === 2nd Step: Prepare Geometry ===
+ // Instantiation of a cuboidGeometry with weights
+
+#ifdef PARALLEL_MODE_MPI
+ CuboidGeometry3D<T> cGeometry( 0, 0, 0, 1, nx, ny, nz, singleton::mpi().getSize() );
+#else
+ CuboidGeometry3D<T> cGeometry( 0, 0, 0, 1, nx, ny, nz, 1 );
+#endif
+
+ cGeometry.setPeriodicity( true, false, true );
+
+ HeuristicLoadBalancer<T> loadBalancer( cGeometry );
+
+ SuperGeometry3D<T> superGeometry( cGeometry,loadBalancer,2 );
+
+ prepareGeometry( superGeometry );
+
+ // === 3rd Step: Prepare Lattice ===
+
+ SuperLattice3D<T, DESCRIPTOR> sLatticeOne( superGeometry );
+ SuperLattice3D<T, DESCRIPTOR> sLatticeTwo( superGeometry );
+
+ ForcedBGKdynamics<T, DESCRIPTOR> bulkDynamics1 (
+ omega1, instances::getExternalVelocityMomenta<T,DESCRIPTOR>() );
+ ForcedBGKdynamics<T, DESCRIPTOR> bulkDynamics2 (
+ omega2, instances::getExternalVelocityMomenta<T,DESCRIPTOR>() );
+
+ // A bounce-back node with fictitious density 1,
+ // which is experienced by the partner fluid
+ BounceBack<T, DESCRIPTOR> bounceBackRho1( 1. );
+ // A bounce-back node with fictitious density 0,
+ // which is experienced by the partner fluid
+ BounceBack<T, DESCRIPTOR> bounceBackRho0( 0. );
+
+ std::vector<T> rho0;
+ rho0.push_back( 1 );
+ rho0.push_back( 1 );
+ PsiEqualsRho<T,T> interactionPotential;
+ ShanChenForcedGenerator3D<T,DESCRIPTOR> coupling( G,rho0,interactionPotential );
+
+ sLatticeOne.addLatticeCoupling(coupling, sLatticeTwo );
+
+ prepareLattice( sLatticeOne, sLatticeTwo, bulkDynamics1, bulkDynamics2,
+ bounceBackRho0, bounceBackRho1, superGeometry );
+
+ // === 4th Step: Main Loop with Timer ===
+ int iT = 0;
+ clout << "starting simulation..." << endl;
+ Timer<T> timer( maxIter, superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ for ( iT=0; iT<maxIter; ++iT ) {
+
+ // === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues( sLatticeOne, sLatticeTwo, force, iT, superGeometry );
+
+ // === 6th Step: Collide and Stream Execution ===
+ sLatticeOne.collideAndStream();
+ sLatticeTwo.collideAndStream();
+
+ sLatticeOne.communicate();
+ sLatticeTwo.communicate();
+
+ sLatticeOne.executeCoupling();
+ //sLatticeTwo.executeCoupling();
+
+ // === 7th Step: Computation and Output of the Results ===
+ getResults( sLatticeTwo, sLatticeOne, iT, superGeometry, timer );
+ }
+
+ timer.stop();
+ timer.printSummary();
+}
+