summaryrefslogtreecommitdiff
path: root/examples/multiComponent/youngLaplace2d/youngLaplace2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/multiComponent/youngLaplace2d/youngLaplace2d.cpp')
-rw-r--r--examples/multiComponent/youngLaplace2d/youngLaplace2d.cpp315
1 files changed, 315 insertions, 0 deletions
diff --git a/examples/multiComponent/youngLaplace2d/youngLaplace2d.cpp b/examples/multiComponent/youngLaplace2d/youngLaplace2d.cpp
new file mode 100644
index 0000000..698aa66
--- /dev/null
+++ b/examples/multiComponent/youngLaplace2d/youngLaplace2d.cpp
@@ -0,0 +1,315 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2018 Robin Trunk
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* youngLaplace2d.cpp
+ * In this example a Young-Laplace test is performed. A circular domain
+ * of fluid 2 is immersed in fluid 1. A diffusive interface forms and the
+ * surface tension can be calculated using the Laplace pressure relation.
+ * The pressure difference is calculated between a point in the middle of
+ * the circular domain and a point furthest away from it in the
+ * computational domain (here left bottom corner).
+ *
+ * This example shows the simplest case for the free-energy model with two
+ * fluid components.
+ */
+
+#include "olb2D.h"
+#include "olb2D.hh" // use only generic version!
+#include <cstdlib>
+#include <iostream>
+#include <fstream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D2Q9<CHEM_POTENTIAL,FORCE>
+
+// Parameters for the simulation setup
+const int N = 100;
+const T nx = 100.;
+const T radius = 0.25 * nx;
+const T alpha = 1.5; // Interfacial width [lattice units]
+const T kappa1 = 0.0075; // For surface tensions [lattice units]
+const T kappa2 = 0.005; // For surface tensions [lattice units]
+const T gama = 1.; // For mobility of interface [lattice units]
+
+const int maxIter = 60000;
+const int vtkIter = 200;
+const int statIter = 1000;
+
+
+void prepareGeometry( SuperGeometry2D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareGeometry" );
+ clout << "Prepare Geometry ..." << std::endl;
+
+ superGeometry.rename( 0,1 );
+
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+
+void prepareLattice( SuperLattice2D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice2,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics1,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics2,
+ UnitConverter<T, DESCRIPTOR>& converter,
+ SuperGeometry2D<T>& superGeometry ) {
+
+ OstreamManager clout( std::cout,"prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ // define lattice Dynamics
+ sLattice1.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+ sLattice2.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
+
+ sLattice1.defineDynamics( superGeometry, 1, &bulkDynamics1 );
+ sLattice2.defineDynamics( superGeometry, 1, &bulkDynamics2 );
+
+ // bulk initial conditions
+ // define circular domain for fluid 2
+ std::vector<T> v( 2,T() );
+ AnalyticalConst2D<T,T> zeroVelocity( v );
+
+ AnalyticalConst2D<T,T> one ( 1. );
+ SmoothIndicatorCircle2D<T,T> circle( {nx/2., nx/2.}, radius, 10.*alpha );
+
+ AnalyticalIdentity2D<T,T> rho( one );
+ AnalyticalIdentity2D<T,T> phi( one - circle - circle );
+
+ sLattice1.iniEquilibrium( superGeometry, 1, rho, zeroVelocity );
+ sLattice2.iniEquilibrium( superGeometry, 1, phi, zeroVelocity );
+
+ sLattice1.initialize();
+ sLattice2.initialize();
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+
+void prepareCoupling(SuperLattice2D<T, DESCRIPTOR>& sLattice1,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice2) {
+
+ OstreamManager clout( std::cout,"prepareCoupling" );
+ clout << "Add lattice coupling" << endl;
+
+ // Add the lattice couplings
+ // The chemical potential coupling must come before the force coupling
+ FreeEnergyChemicalPotentialGenerator2D<T, DESCRIPTOR> coupling1(
+ alpha, kappa1, kappa2);
+ FreeEnergyForceGenerator2D<T, DESCRIPTOR> coupling2;
+
+ sLattice1.addLatticeCoupling( coupling1, sLattice2 );
+ sLattice2.addLatticeCoupling( coupling2, sLattice1 );
+
+ clout << "Add lattice coupling ... OK!" << endl;
+}
+
+
+void getResults( SuperLattice2D<T, DESCRIPTOR>& sLattice2,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice1, int iT,
+ SuperGeometry2D<T>& superGeometry, Timer<T>& timer,
+ UnitConverter<T, DESCRIPTOR> converter) {
+
+ OstreamManager clout( std::cout,"getResults" );
+ SuperVTMwriter2D<T> vtmWriter( "youngLaplace2d" );
+
+ if ( iT==0 ) {
+ // Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry2D<T, DESCRIPTOR> geometry( sLattice1, superGeometry );
+ SuperLatticeCuboid2D<T, DESCRIPTOR> cuboid( sLattice1 );
+ SuperLatticeRank2D<T, DESCRIPTOR> rank( sLattice1 );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+ vtmWriter.createMasterFile();
+ }
+
+ // Get statistics
+ if ( iT%statIter==0 ) {
+ // Timer console output
+ timer.update( iT );
+ timer.printStep();
+ sLattice1.getStatistics().print( iT, converter.getPhysTime(iT) );
+ sLattice2.getStatistics().print( iT, converter.getPhysTime(iT) );
+ }
+
+ // Writes the VTK files
+ if ( iT%vtkIter==0 ) {
+ AnalyticalConst2D<T,T> half_( 0.5 );
+ SuperLatticeFfromAnalyticalF2D<T, DESCRIPTOR> half(half_, sLattice1);
+
+ SuperLatticeDensity2D<T, DESCRIPTOR> density1( sLattice1 );
+ density1.getName() = "rho";
+ SuperLatticeDensity2D<T, DESCRIPTOR> density2( sLattice2 );
+ density2.getName() = "phi";
+
+ SuperIdentity2D<T,T> c1 (half*(density1+density2));
+ c1.getName() = "density-fluid-1";
+ SuperIdentity2D<T,T> c2 (half*(density1-density2));
+ c2.getName() = "density-fluid-2";
+
+ vtmWriter.addFunctor( density1 );
+ vtmWriter.addFunctor( density2 );
+ vtmWriter.addFunctor( c1 );
+ vtmWriter.addFunctor( c2 );
+ vtmWriter.write( iT );
+
+ // calculate bulk pressure, pressure difference and surface tension
+ if(iT%statIter==0) {
+ AnalyticalConst2D<T,T> two_( 2. );
+ AnalyticalConst2D<T,T> onefive_( 1.5 );
+ AnalyticalConst2D<T,T> k1_( kappa1 );
+ AnalyticalConst2D<T,T> k2_( kappa2 );
+ AnalyticalConst2D<T,T> cs2_( 1./descriptors::invCs2<T,DESCRIPTOR>() );
+ SuperLatticeFfromAnalyticalF2D<T, DESCRIPTOR> two(two_, sLattice1);
+ SuperLatticeFfromAnalyticalF2D<T, DESCRIPTOR> onefive(onefive_, sLattice1);
+ SuperLatticeFfromAnalyticalF2D<T, DESCRIPTOR> k1(k1_, sLattice1);
+ SuperLatticeFfromAnalyticalF2D<T, DESCRIPTOR> k2(k2_, sLattice1);
+ SuperLatticeFfromAnalyticalF2D<T, DESCRIPTOR> cs2(cs2_, sLattice1);
+
+ // Calculation of bulk pressure:
+ // c_1 = density of fluid 1; c_2 = density of fluid 2
+ // p_bulk = rho*c_s^2 + kappa1 * (3/2*c_1^4 - 2*c_1^3 + 0.5*c_1^2)
+ // + kappa2 * (3/2*c_2^4 - 2*c_2^3 + 0.5*c_2^2)
+ SuperIdentity2D<T,T> bulkPressure ( density1*cs2
+ + k1*( onefive*c1*c1*c1*c1 - two*c1*c1*c1 + half*c1*c1 )
+ + k2*( onefive*c2*c2*c2*c2 - two*c2*c2*c2 + half*c2*c2 ) );
+
+ AnalyticalFfromSuperF2D<T, T> interpolPressure( bulkPressure, true, 1);
+ double position[2] = { 0.5*nx, 0.5*nx };
+ double pressureIn = 0.;
+ double pressureOut = 0.;
+ interpolPressure(&pressureIn, position);
+ position[0] = ((double)N/100.)*converter.getPhysDeltaX();
+ position[1] = ((double)N/100.)*converter.getPhysDeltaX();
+ interpolPressure(&pressureOut, position);
+
+ clout << "Pressure Difference: " << pressureIn-pressureOut << " ; ";
+ clout << "Surface Tension: " << radius*(pressureIn-pressureOut) << std::endl;
+ clout << "Analytical Pressure Difference: " << alpha/(6.*radius) * (kappa1 + kappa2) << " ; ";
+ clout << "Analytical Surface Tension: " << alpha/6. * (kappa1 + kappa2) << std::endl;
+ }
+ }
+}
+
+
+int main( int argc, char *argv[] ) {
+
+ // === 1st Step: Initialization ===
+
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout,"main" );
+
+ UnitConverterFromResolutionAndRelaxationTime<T,DESCRIPTOR> converter(
+ (T) N, // resolution
+ (T) 1., // lattice relaxation time (tau)
+ (T) nx, // charPhysLength: reference length of simulation geometry
+ (T) 1.e-6, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) 0.1, // physViscosity: physical kinematic viscosity in __m^2 / s__
+ (T) 1. // physDensity: physical density in __kg / m^3__
+ );
+
+ // Prints the converter log as console output
+ converter.print();
+
+ // === 2nd Step: Prepare Geometry ===
+ std::vector<T> extend = { nx, nx, nx };
+ std::vector<T> origin = { 0, 0, 0 };
+ IndicatorCuboid2D<T> cuboid(extend,origin);
+#ifdef PARALLEL_MODE_MPI
+ CuboidGeometry2D<T> cGeometry( cuboid, converter.getPhysDeltaX(), singleton::mpi().getSize() );
+#else
+ CuboidGeometry2D<T> cGeometry( cuboid, converter.getPhysDeltaX() );
+#endif
+
+ // set periodic boundaries to the domain
+ cGeometry.setPeriodicity( true, true );
+
+ // Instantiation of loadbalancer
+ HeuristicLoadBalancer<T> loadBalancer( cGeometry );
+ loadBalancer.print();
+
+ // Instantiation of superGeometry
+ SuperGeometry2D<T> superGeometry( cGeometry,loadBalancer );
+
+ prepareGeometry( superGeometry );
+
+ // === 3rd Step: Prepare Lattice ===
+ SuperLattice2D<T, DESCRIPTOR> sLattice1( superGeometry );
+ SuperLattice2D<T, DESCRIPTOR> sLattice2( superGeometry );
+
+ ForcedBGKdynamics<T, DESCRIPTOR> bulkDynamics1 (
+ converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,DESCRIPTOR>() );
+
+ FreeEnergyBGKdynamics<T, DESCRIPTOR> bulkDynamics2 (
+ converter.getLatticeRelaxationFrequency(), gama,
+ instances::getBulkMomenta<T,DESCRIPTOR>() );
+
+ prepareLattice( sLattice1, sLattice2, bulkDynamics1, bulkDynamics2,
+ converter, superGeometry );
+
+ prepareCoupling( sLattice1, sLattice2);
+
+ SuperExternal2D<T,DESCRIPTOR,CHEM_POTENTIAL> sExternal1 (superGeometry, sLattice1, sLattice1.getOverlap() );
+ SuperExternal2D<T,DESCRIPTOR,CHEM_POTENTIAL> sExternal2 (superGeometry, sLattice2, sLattice2.getOverlap() );
+
+ // === 4th Step: Main Loop with Timer ===
+ int iT = 0;
+ clout << "starting simulation..." << endl;
+ Timer<T> timer( maxIter, superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ for ( iT=0; iT<=maxIter; ++iT ) {
+ // Computation and output of the results
+ getResults( sLattice2, sLattice1, iT, superGeometry, timer, converter );
+
+ // Collide and stream execution
+ sLattice1.collideAndStream();
+ sLattice2.collideAndStream();
+
+ // MPI communication for lattice data
+ sLattice1.communicate();
+ sLattice2.communicate();
+
+ // Execute coupling between the two lattices
+ sLattice1.executeCoupling();
+ sExternal1.communicate();
+ sExternal2.communicate();
+ sLattice2.executeCoupling();
+ }
+
+ timer.stop();
+ timer.printSummary();
+
+}