summaryrefslogtreecommitdiff
path: root/examples/particles/bifurcation3d/eulerEuler/bifurcation3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/particles/bifurcation3d/eulerEuler/bifurcation3d.cpp')
-rw-r--r--examples/particles/bifurcation3d/eulerEuler/bifurcation3d.cpp420
1 files changed, 420 insertions, 0 deletions
diff --git a/examples/particles/bifurcation3d/eulerEuler/bifurcation3d.cpp b/examples/particles/bifurcation3d/eulerEuler/bifurcation3d.cpp
new file mode 100644
index 0000000..69ac959
--- /dev/null
+++ b/examples/particles/bifurcation3d/eulerEuler/bifurcation3d.cpp
@@ -0,0 +1,420 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2011-2016 Robin Trunk, Mathias J. Krause
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* bifurcation3d.cpp:
+ * This example examines a steady particulate flow past a bifurcation. At the inlet,
+ * an inflow condition with grad_n u = 0 and rho = 1 is implemented.
+ * At both outlets, a Poiseuille profile is imposed on the velocity.
+ * After a start time, particles are put into the bifurcation by imposing
+ * a inflow condition with rho = 1 on the second euler phase at the inlet.
+ * The particles are simulated as a continuum with a advection-diffusion equation
+ * and experience a stokes drag force.
+ *
+ * A publication using the same geometry can be found here:
+ * http://link.springer.com/chapter/10.1007/978-3-642-36961-2_5
+ * *
+ */
+
+#include "olb3D.h"
+#include "olb3D.hh" // use only generic version!
+
+using namespace std;
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace olb::util;
+
+typedef double T;
+#define NSDESCRIPTOR D3Q19<>
+#define ADDESCRIPTOR D3Q7<VELOCITY,VELOCITY2>
+
+const T Re = 50; // Reynolds number
+const int N = 19; // resolution of the model
+const int iTperiod = 100; // amount of timesteps when new boundary conditions are reset and results are visualized
+const T diffusion = 1.e-6; // diffusion coefficient for advection-diffusion equation
+const T radius = 1.5e-04; // particles radius
+const T partRho = 998.2; // particles density
+const T maxPhysT = 10.; // max. simulation time in s, SI unit
+
+// center of inflow and outflow regions [m]
+Vector<T,3> inletCenter( T(), T(), 0.0786395 );
+Vector<T,3> outletCenter0( -0.0235929682287551, -0.000052820468762797, -0.021445708949909 );
+Vector<T,3> outletCenter1( 0.0233643529416147, 0.00000212439067050152, -0.0211994104877918 );
+
+// radii of inflow and outflow regions [m]
+T inletRadius = 0.00999839;
+T outletRadius0 = 0.007927;
+T outletRadius1 = 0.00787134;
+
+// normals of inflow and outflow regions
+Vector<T,3> inletNormal( T(), T(), T( -1 ) );
+Vector<T,3> outletNormal0( 0.505126, -0.04177, 0.862034 );
+Vector<T,3> outletNormal1( -0.483331, -0.0102764, 0.875377 );
+
+void prepareGeometry( UnitConverter<T,NSDESCRIPTOR> const& converter,
+ IndicatorF3D<T>& indicator, STLreader<T>& stlReader,
+ SuperGeometry3D<T>& superGeometry )
+{
+
+ OstreamManager clout( std::cout, "prepareGeometry" );
+
+ clout << "Prepare Geometry ..." << std::endl;
+
+ superGeometry.rename( 0, 2, indicator );
+ superGeometry.rename( 2, 1, stlReader );
+
+ superGeometry.clean();
+
+ // rename the material at the inlet
+ IndicatorCircle3D<T> inletCircle( inletCenter, inletNormal, inletRadius );
+ IndicatorCylinder3D<T> inlet( inletCircle, 2 * converter.getConversionFactorLength() );
+ superGeometry.rename( 2, 3, 1, inlet );
+
+ // rename the material at the outlet0
+ IndicatorCircle3D<T> outletCircle0( outletCenter0, outletNormal0, 0.95*outletRadius0 );
+ IndicatorCylinder3D<T> outlet0( outletCircle0, 4 * converter.getConversionFactorLength() );
+ superGeometry.rename( 2, 4, outlet0 );
+
+ // rename the material at the outlet1
+ IndicatorCircle3D<T> outletCircle1( outletCenter1, outletNormal1, 0.95*outletRadius1 );
+ IndicatorCylinder3D<T> outlet1( outletCircle1, 4 * converter.getConversionFactorLength() );
+ superGeometry.rename( 2, 5, outlet1 );
+
+ superGeometry.clean();
+ superGeometry.innerClean( true );
+ superGeometry.checkForErrors();
+
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+ return;
+}
+
+void prepareLattice( SuperLattice3D<T, NSDESCRIPTOR>& sLatticeNS,
+ SuperLattice3D<T, ADDESCRIPTOR>& sLatticeAD,
+ UnitConverter<T,NSDESCRIPTOR> const& converter,
+ Dynamics<T, NSDESCRIPTOR>& bulkDynamics,
+ Dynamics<T, ADDESCRIPTOR>& bulkDynamicsAD,
+ sOnLatticeBoundaryCondition3D<T, NSDESCRIPTOR>& bc,
+ sOnLatticeBoundaryCondition3D<T, ADDESCRIPTOR>& bcAD,
+ SuperGeometry3D<T>& superGeometry,
+ T omegaAD )
+{
+
+ OstreamManager clout( std::cout, "prepareLattice" );
+ clout << "Prepare Lattice ..." << std::endl;
+
+ const T omega = converter.getLatticeRelaxationFrequency();
+
+ // Material=0 --> do nothing
+ sLatticeNS.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, NSDESCRIPTOR>() );
+ sLatticeAD.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, ADDESCRIPTOR>() );
+
+ // Material=1 --> bulk dynamics
+ // Material=3 --> bulk dynamics (inflow)
+ auto inflowIndicator = superGeometry.getMaterialIndicator({1, 3});
+ sLatticeNS.defineDynamics( inflowIndicator, &bulkDynamics );
+ sLatticeAD.defineDynamics( inflowIndicator, &bulkDynamicsAD );
+
+ // Material=2 --> bounce-back /
+ sLatticeNS.defineDynamics( superGeometry, 2, &instances::getBounceBack<T, NSDESCRIPTOR>() );
+ sLatticeAD.defineDynamics( superGeometry, 2, &instances::getZeroDistributionDynamics<T, ADDESCRIPTOR>() );
+
+ // Material=4,5 -->bulk dynamics / do-nothing (outflow)
+ auto outflowIndicator = superGeometry.getMaterialIndicator({4, 5});
+ sLatticeNS.defineDynamics( outflowIndicator, &bulkDynamics );
+ sLatticeAD.defineDynamics( outflowIndicator, &instances::getNoDynamics<T, ADDESCRIPTOR>() );
+
+ // Setting of the boundary conditions
+ bc.addPressureBoundary( superGeometry, 3, omega );
+ bc.addVelocityBoundary( outflowIndicator, omega );
+ bcAD.addZeroDistributionBoundary( superGeometry, 2 );
+ bcAD.addTemperatureBoundary( superGeometry, 3, omegaAD );
+ bcAD.addConvectionBoundary( outflowIndicator );
+ bcAD.addExtFieldBoundary( superGeometry.getMaterialIndicator({2, 3, 4, 5}), ADDESCRIPTOR::index<descriptors::VELOCITY>() );
+
+ // Initial conditions
+ AnalyticalConst3D<T,T> rho1( 1. );
+ AnalyticalConst3D<T,T> rho0( 1.e-8 );
+ std::vector<T> velocity( 3,T() );
+ AnalyticalConst3D<T,T> u0( velocity );
+
+ // Initialize all values of distribution functions to their local equilibrium
+ sLatticeNS.defineRhoU( superGeometry.getMaterialIndicator({1, 2, 3, 4, 5}), rho1, u0 );
+ sLatticeNS.iniEquilibrium( superGeometry.getMaterialIndicator({1, 2, 3, 4, 5}), rho1, u0 );
+ sLatticeAD.defineRho( superGeometry, 3, rho1 );
+ sLatticeAD.iniEquilibrium( superGeometry.getMaterialIndicator({1, 2, 4, 5}), rho0, u0 );
+
+ // Lattice initialize
+ sLatticeNS.initialize();
+ sLatticeAD.initialize();
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+ return;
+}
+
+void setBoundaryValues( SuperLattice3D<T, NSDESCRIPTOR>& sLatticeNS,
+ UnitConverter<T,NSDESCRIPTOR> const& converter, int iT,
+ T maxPhysT, SuperGeometry3D<T>& superGeometry )
+{
+
+ OstreamManager clout( std::cout, "setBoundaryValues" );
+
+ // No of time steps for smooth start-up
+ int iTmaxStart = converter.getLatticeTime( 0.8*maxPhysT );
+ // Set inflow velocity
+ T maxVelocity = converter.getCharLatticeVelocity() * 3. / 4. * std::pow(
+ inletRadius, 2 ) / std::pow( outletRadius0, 2 );
+ if ( iT % iTperiod == 0 ) {
+ if ( iT <= iTmaxStart ) {
+ SinusStartScale<T, int> startScale( iTmaxStart, T( 1 ) );
+ int iTvec[1] = { iT };
+ T frac[1] = { T( 0 ) };
+ startScale( frac, iTvec );
+ maxVelocity *= frac[0];
+ }
+
+ CirclePoiseuille3D<T> poiseuilleU4( outletCenter0[0], outletCenter0[1],
+ outletCenter0[2], outletNormal0[0],
+ outletNormal0[1], outletNormal0[2],
+ outletRadius0 * 0.95, -maxVelocity );
+
+ CirclePoiseuille3D<T> poiseuilleU5( outletCenter1[0], outletCenter1[1],
+ outletCenter1[2], outletNormal1[0],
+ outletNormal1[1], outletNormal1[2],
+ outletRadius1 * 0.95, -maxVelocity );
+
+ sLatticeNS.defineU( superGeometry, 4, poiseuilleU4 );
+ sLatticeNS.defineU( superGeometry, 5, poiseuilleU5 );
+ }
+}
+
+void getResults( SuperLattice3D<T, NSDESCRIPTOR>& sLatticeNS,
+ SuperLattice3D<T, ADDESCRIPTOR>& sLatticeAD,
+ UnitConverter<T,NSDESCRIPTOR> const& converter, int iT,
+ SuperGeometry3D<T>& superGeometry,
+ Timer<double>& timer )
+{
+
+ OstreamManager clout( std::cout, "getResults" );
+ SuperVTMwriter3D<T> vtmWriter( "bifurcation3d_fluid" );
+ SuperVTMwriter3D<T> vtmWriterAD( "bifurcation3d_particle" );
+ SuperLatticePhysVelocity3D<T, NSDESCRIPTOR> velocity( sLatticeNS, converter );
+ SuperLatticeVelocity3D<T, NSDESCRIPTOR> latticeVelocity( sLatticeNS);
+
+ SuperLatticePhysPressure3D<T, NSDESCRIPTOR> pressure( sLatticeNS, converter );
+ SuperLatticeDensity3D<T, ADDESCRIPTOR> particles( sLatticeAD );
+ SuperLatticePhysExternal3D<T, ADDESCRIPTOR> extField(sLatticeAD,
+ converter.getConversionFactorVelocity(),
+ ADDESCRIPTOR::index<descriptors::VELOCITY>(),
+ ADDESCRIPTOR::size<descriptors::VELOCITY>());
+
+ vtmWriter.addFunctor( velocity );
+ vtmWriter.addFunctor( pressure );
+ vtmWriterAD.addFunctor( particles );
+ vtmWriterAD.addFunctor( extField );
+
+ if ( iT == 0 ) {
+ SuperLatticeGeometry3D<T, NSDESCRIPTOR> geometry( sLatticeNS, superGeometry );
+ SuperLatticeCuboid3D<T, NSDESCRIPTOR> cuboid( sLatticeNS );
+ SuperLatticeRank3D<T, NSDESCRIPTOR> rank( sLatticeNS );
+ vtmWriter.write( geometry );
+ vtmWriter.write( cuboid );
+ vtmWriter.write( rank );
+ vtmWriter.createMasterFile();
+ vtmWriterAD.createMasterFile();
+
+ // Print some output of the chosen simulation setup
+ clout << "N=" << N << "; maxTimeSteps=" << converter.getLatticeTime( maxPhysT )
+ << "; noOfCuboid=" << superGeometry.getCuboidGeometry().getNc() << "; Re=" << Re
+ << "; St=" << ( 2.*partRho*radius*radius*converter.getCharPhysVelocity() ) / ( 9.*converter.getPhysViscosity()*converter.getPhysDensity()*converter.getCharPhysLength() )
+ << std::endl;
+ }
+
+ if ( iT % iTperiod == 0 ) {
+ // Writes the vtk files
+ vtmWriter.write( iT );
+ vtmWriterAD.write( iT );
+
+ // GIF Writer
+ SuperEuklidNorm3D<T, NSDESCRIPTOR> normVel( velocity );
+ HyperplaneLattice3D<T> gifLattice(
+ superGeometry.getCuboidGeometry(),
+ Hyperplane3D<T>()
+ .centeredIn(superGeometry.getCuboidGeometry().getMotherCuboid())
+ .normalTo({0, -1, 0}),
+ 600);
+ BlockReduction3D2D<T> planeReductionVelocity( normVel, gifLattice, BlockDataSyncMode::ReduceOnly );
+ BlockReduction3D2D<T> planeReductionParticles( particles, gifLattice, BlockDataSyncMode::ReduceOnly );
+ // write output as JPEG
+ heatmap::write(planeReductionVelocity, iT);
+ heatmap::write(planeReductionParticles, iT);
+
+ // Writes output on the console
+ timer.update( iT );
+ timer.printStep();
+ sLatticeNS.getStatistics().print( iT, iT * converter.getCharLatticeVelocity() / T(converter.getResolution()) );
+
+ // preparation for flux computations
+ const std::vector<int> materials = { 1, 3, 4, 5 };
+ IndicatorCircle3D<T> inlet( inletCenter + 2. * converter.getConversionFactorLength() * inletNormal,
+ inletNormal,
+ inletRadius + 2. * converter.getConversionFactorLength() );
+ IndicatorCircle3D<T> outlet0( outletCenter0 + 2. * converter.getConversionFactorLength() * outletNormal0,
+ outletNormal0,
+ outletRadius0 + 2. * converter.getConversionFactorLength() );
+ IndicatorCircle3D<T> outlet1( outletCenter1 + 2. * converter.getConversionFactorLength() * outletNormal1,
+ outletNormal1,
+ outletRadius1 + 2. * converter.getConversionFactorLength() );
+
+ // Flux of the fluid at the inlet and outlet regions
+ SuperPlaneIntegralFluxVelocity3D<T> vFluxInflow( sLatticeNS, converter, superGeometry, inlet, materials );
+ vFluxInflow.print( "inflow", "ml/s" );
+ SuperPlaneIntegralFluxPressure3D<T> pFluxInflow( sLatticeNS, converter, superGeometry, inlet, materials );
+ pFluxInflow.print( "inflow", "N", "Pa" );
+ SuperPlaneIntegralFluxVelocity3D<T> vFluxOutflow0( sLatticeNS, converter, superGeometry, outlet0, materials );
+ vFluxOutflow0.print( "outflow0", "ml/s" );
+ SuperPlaneIntegralFluxPressure3D<T> pFluxOutflow0( sLatticeNS, converter, superGeometry, outlet0, materials );
+ pFluxOutflow0.print( "outflow0", "N", "Pa" );
+ SuperPlaneIntegralFluxVelocity3D<T> vFluxOutflow1( sLatticeNS, converter, superGeometry, outlet1, materials );
+ vFluxOutflow1.print( "outflow1", "ml/s" );
+ SuperPlaneIntegralFluxPressure3D<T> pFluxOutflow1( sLatticeNS, converter, superGeometry, outlet1, materials );
+ pFluxOutflow1.print( "outflow1", "N", "Pa" );
+
+ int input[4] = {0};
+ T mFlux[5] = {0.}, mFlux0[5] = {0.}, mFlux1[5] = {0.};
+ // Flux of particles at the inlet and outlet regions: Inflow, Outflow0 and Outlfow1
+ SuperPlaneIntegralFluxMass3D<T> mFluxInflow(latticeVelocity,particles,
+ superGeometry, converter.getConversionFactorMass(),
+ converter.getConversionFactorTime(), inlet, materials);
+ SuperPlaneIntegralFluxMass3D<T> mFluxOutflow0(latticeVelocity, particles,
+ superGeometry, converter.getConversionFactorMass(),
+ converter.getConversionFactorTime(),outlet0, materials);
+ SuperPlaneIntegralFluxMass3D<T> mFluxOutflow1(latticeVelocity, particles,
+ superGeometry, converter.getConversionFactorMass(),
+ converter.getConversionFactorTime(), outlet1, materials);
+
+ mFluxInflow( mFlux,input );
+ mFluxOutflow0( mFlux0,input );
+ mFluxOutflow1( mFlux1,input );
+
+ // Since more diffusion is added to ensure stability the computed escaperate falls short of the real value,
+ // therefore it is scaled by the factor 1.4 computed by a simulation without drag force. This value is computed
+ // for this specific setup. For further information see R.Trunk, T.Henn, W.Dörfler, H.Nirschl, M.J.Krause,
+ // "Inertial Dilute Particulate Fluid Flow Simulations with an Euler-Euler Lattice Boltzmann Method"
+ T escr = -( mFlux0[0]+mFlux1[0] )/mFlux[0]*1.4;
+ clout << "escapeRate=" << escr << "; captureRate="<< 1-escr << std::endl;
+ }
+}
+
+int main( int argc, char* argv[] )
+{
+
+ // === 1st Step: Initialization ===
+
+ olbInit( &argc, &argv );
+ singleton::directories().setOutputDir( "./tmp/" );
+ OstreamManager clout( std::cout, "main" );
+
+ UnitConverterFromResolutionAndRelaxationTime<T,NSDESCRIPTOR> const converter(
+ int {N}, // resolution: number of voxels per charPhysL
+ (T) 0.557646, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
+ (T) inletRadius*2., // charPhysLength: reference length of simulation geometry
+ (T) Re*1.5e-5/( inletRadius*2 ), // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) 1.5e-5, // physViscosity: physical kinematic viscosity in __m^2 / s__
+ (T) 1.225 // physDensity: physical density in __kg / m^3__
+ );
+ // Prints the converter log as console output
+ converter.print();
+ // Writes the converter log in a file
+ converter.write("bifurcation3d");
+
+ // compute relaxation parameter to solve the advection-diffusion equation in the lattice Boltzmann context
+ T omegaAD = converter.getLatticeRelaxationFrequencyFromDiffusivity<ADDESCRIPTOR>( diffusion );
+
+ // === 2nd Step: Prepare Geometry ===
+
+ STLreader<T> stlReader( "../bifurcation3d.stl",converter.getConversionFactorLength() );
+ IndicatorLayer3D<T> extendedDomain( stlReader,converter.getConversionFactorLength() );
+
+ // Instantiation of an empty cuboidGeometry
+ int noOfCuboids = std::max( 20, singleton::mpi().getSize() );
+ CuboidGeometry3D<T> cuboidGeometry( extendedDomain, converter.getConversionFactorLength(),
+ noOfCuboids, "weight" );
+ cuboidGeometry.printExtended();
+ clout << "min / max ratio (volume) = " << (T) cuboidGeometry.getMinLatticeVolume()
+ / cuboidGeometry.getMaxLatticeVolume() << endl;
+ clout << "min / max ratio (weight) = " << (T) cuboidGeometry.getMinLatticeWeight()
+ / cuboidGeometry.getMaxLatticeWeight() << endl;
+
+ // Instantiation of an empty loadBalancer
+ HeuristicLoadBalancer<T> loadBalancer( cuboidGeometry );
+ // Default instantiation of superGeometry
+ SuperGeometry3D<T> superGeometry( cuboidGeometry, loadBalancer, 2 );
+
+ prepareGeometry( converter, extendedDomain, stlReader, superGeometry );
+
+ // === 3rd Step: Prepare Lattice ===
+ SuperLattice3D<T, NSDESCRIPTOR> sLatticeNS( superGeometry );
+ SuperLattice3D<T, ADDESCRIPTOR> sLatticeAD( superGeometry );
+ SuperExternal3D<T, ADDESCRIPTOR, descriptors::VELOCITY> sExternal( superGeometry, sLatticeAD, sLatticeAD.getOverlap() );
+
+ BGKdynamics<T, NSDESCRIPTOR> bulkDynamics( converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T, NSDESCRIPTOR>() );
+ ParticleAdvectionDiffusionBGKdynamics<T, ADDESCRIPTOR> bulkDynamicsAD ( omegaAD,
+ instances::getBulkMomenta<T,ADDESCRIPTOR>() );
+
+ sOnLatticeBoundaryCondition3D<T, NSDESCRIPTOR> sBoundaryCondition( sLatticeNS );
+ createInterpBoundaryCondition3D<T, NSDESCRIPTOR>( sBoundaryCondition );
+
+ sOnLatticeBoundaryCondition3D<T, ADDESCRIPTOR> sBoundaryConditionAD( sLatticeAD );
+ createAdvectionDiffusionBoundaryCondition3D<T,ADDESCRIPTOR>( sBoundaryConditionAD );
+
+ prepareLattice( sLatticeNS, sLatticeAD, converter, bulkDynamics, bulkDynamicsAD,
+ sBoundaryCondition, sBoundaryConditionAD, superGeometry, omegaAD );
+
+ AdvectionDiffusionParticleCouplingGenerator3D<T,NSDESCRIPTOR, ADDESCRIPTOR> coupling(
+ ADDESCRIPTOR::index<descriptors::VELOCITY>() );
+
+ AdvDiffDragForce3D<T, NSDESCRIPTOR, ADDESCRIPTOR> dragForce( converter,radius,partRho );
+ coupling.addForce( dragForce );
+ sLatticeNS.addLatticeCoupling( superGeometry, 1, coupling, sLatticeAD );
+
+ // === 4th Step: Main Loop with Timer ===
+ Timer<double> timer( converter.getLatticeTime( maxPhysT ),
+ superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ for ( int iT = 0; iT <= converter.getLatticeTime( maxPhysT ); ++iT ) {
+ getResults( sLatticeNS, sLatticeAD, converter, iT, superGeometry, timer );
+ setBoundaryValues( sLatticeNS, converter, iT, maxPhysT, superGeometry );
+ sLatticeNS.executeCoupling();
+ sExternal.communicate();
+ sLatticeNS.collideAndStream();
+ sLatticeAD.collideAndStream();
+ }
+ timer.stop();
+ timer.printSummary();
+
+}