summaryrefslogtreecommitdiff
path: root/examples/particles/settlingCube3d/settlingCube3D.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/particles/settlingCube3d/settlingCube3D.cpp')
-rw-r--r--examples/particles/settlingCube3d/settlingCube3D.cpp294
1 files changed, 294 insertions, 0 deletions
diff --git a/examples/particles/settlingCube3d/settlingCube3D.cpp b/examples/particles/settlingCube3d/settlingCube3D.cpp
new file mode 100644
index 0000000..f075927
--- /dev/null
+++ b/examples/particles/settlingCube3d/settlingCube3D.cpp
@@ -0,0 +1,294 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2006-2015 Fabian Klemens, Jonas Latt, Mathias J. Krause
+ * Vojtech Cvrcek, Peter Weisbrod
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* settlingCube3d.cpp:
+ * The case examines the settling of a cubical silica particle
+ * under the influence of gravity.
+ * The object is surrounded by water in a rectangular domain
+ * limited by no-slip boundary conditions.
+ * For the calculation of forces an DNS approach is chosen
+ * which also leads to a back-coupling of the particle on the fluid,
+ * inducing a flow.
+ *
+ * The simulation is based on the homogenised lattice Boltzmann approach
+ * (HLBM) introduced in "Particle flow simulations with homogenised
+ * lattice Boltzmann methods" by Krause et al.
+ * and extended in "Towards the simulation of arbitrarily shaped 3D particles
+ * using a homogenised lattice Boltzmann method" by Trunk et al.
+ * for the simulation of 3D particles.
+ *
+ * This example demonstrates the usage of HLBM in the OpenLB framework.
+ */
+
+#include "olb3D.h"
+#include "olb3D.hh" // use generic version only!
+
+#include <vector>
+#include <cmath>
+#include <iostream>
+#include <fstream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace olb::util;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR D3Q19<POROSITY,VELOCITY_NUMERATOR,VELOCITY_DENOMINATOR>
+
+#define WriteVTK
+
+// Discretization Settings
+int res = 30;
+T const charLatticeVelocity = 0.01;
+
+// Time Settings
+T const maxPhysT = 0.5; // max. simulation time in s
+T const iTwrite = 0.02; // write out intervall in s
+
+// Domain Settings
+T const lengthX = 0.01;
+T const lengthY = 0.01;
+T const lengthZ = 0.05;
+
+// Fluid Settings
+T const physDensity = 1000;
+T const physViscosity = 1E-5;
+
+//Particle Settings
+T centerX = lengthX*.5;
+T centerY = lengthY*.5;
+T centerZ = lengthZ*.9;
+T const cubeDensity = 2500;
+T const cubeEdgeLength = 0.0025;
+Vector<T,3> cubeCenter = {centerX,centerY,centerZ};
+Vector<T,3> cubeOrientation = {0.,15.,0.};
+Vector<T,3> cubeVelocity = {0.,0.,0.};
+Vector<T,3> externalAcceleration = {.0, .0, -9.81 * (1. - physDensity / cubeDensity)};
+
+// Characteristic Quantities
+T const charPhysLength = lengthX;
+T const charPhysVelocity = 0.15; // Assumed maximal velocity
+
+
+// Prepare geometry
+void prepareGeometry(UnitConverter<T,DESCRIPTOR> const& converter,
+ SuperGeometry3D<T>& superGeometry)
+{
+ OstreamManager clout(std::cout, "prepareGeometry");
+ clout << "Prepare Geometry ..." << std::endl;
+
+ superGeometry.rename(0, 2);
+ superGeometry.rename(2, 1, 1, 1, 1);
+
+ superGeometry.clean();
+ superGeometry.innerClean();
+
+ superGeometry.checkForErrors();
+ superGeometry.getStatistics().print();
+ clout << "Prepare Geometry ... OK" << std::endl;
+ return;
+}
+
+
+// Set up the geometry of the simulation
+void prepareLattice(
+ SuperLattice3D<T, DESCRIPTOR>& sLattice, UnitConverter<T,DESCRIPTOR> const& converter,
+ Dynamics<T, DESCRIPTOR>& designDynamics,
+ sOnLatticeBoundaryCondition3D<T, DESCRIPTOR>& sBoundaryCondition,
+ SuperGeometry3D<T>& superGeometry)
+{
+ OstreamManager clout(std::cout, "prepareLattice");
+ clout << "Prepare Lattice ..." << std::endl;
+ clout << "setting Velocity Boundaries ..." << std::endl;
+
+ /// Material=0 -->do nothing
+ sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>());
+ sLattice.defineDynamics(superGeometry, 1, &designDynamics);
+ sLattice.defineDynamics(superGeometry, 2, &instances::getBounceBack<T, DESCRIPTOR>());
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+
+//Set Boundary Values
+void setBoundaryValues(SuperLattice3D<T, DESCRIPTOR>& sLattice,
+ UnitConverter<T,DESCRIPTOR> const& converter, int iT,
+ SuperGeometry3D<T>& superGeometry)
+{
+ OstreamManager clout(std::cout, "setBoundaryValues");
+
+ if (iT == 0) {
+ AnalyticalConst3D<T, T> zero(0.);
+ AnalyticalConst3D<T, T> one(1.);
+ sLattice.defineField<descriptors::POROSITY>(superGeometry.getMaterialIndicator({0,1,2}), one);
+ // Set initial condition
+ AnalyticalConst3D<T, T> ux(0.);
+ AnalyticalConst3D<T, T> uy(0.);
+ AnalyticalConst3D<T, T> uz(0.);
+ AnalyticalConst3D<T, T> rho(1.);
+ AnalyticalComposed3D<T, T> u(ux, uy, uz);
+
+ //Initialize all values of distribution functions to their local equilibrium
+ sLattice.defineRhoU(superGeometry, 1, rho, u);
+ sLattice.iniEquilibrium(superGeometry, 1, rho, u);
+
+ // Make the lattice ready for simulation
+ sLattice.initialize();
+ }
+}
+
+
+/// Computes the pressure drop between the voxels before and after the cylinder
+void getResults(SuperLattice3D<T, DESCRIPTOR>& sLattice,
+ UnitConverter<T,DESCRIPTOR> const& converter, int iT,
+ SuperGeometry3D<T>& superGeometry, Timer<double>& timer,
+ ParticleDynamics3D<T, DESCRIPTOR> particleDynamics)
+{
+ OstreamManager clout(std::cout, "getResults");
+
+#ifdef WriteVTK
+ SuperVTMwriter3D<T> vtkWriter("sedimentation");
+ SuperLatticePhysVelocity3D<T, DESCRIPTOR> velocity(sLattice, converter);
+ SuperLatticePhysPressure3D<T, DESCRIPTOR> pressure(sLattice, converter);
+ SuperLatticePhysExternalPorosity3D<T, DESCRIPTOR> externalPor(sLattice, converter);
+ vtkWriter.addFunctor(velocity);
+ vtkWriter.addFunctor(pressure);
+ vtkWriter.addFunctor(externalPor);
+
+ if (iT == 0) {
+ /// Writes the converter log file
+ SuperLatticeGeometry3D<T, DESCRIPTOR> geometry(sLattice, superGeometry);
+ SuperLatticeCuboid3D<T, DESCRIPTOR> cuboid(sLattice);
+ SuperLatticeRank3D<T, DESCRIPTOR> rank(sLattice);
+ vtkWriter.write(geometry);
+ vtkWriter.write(cuboid);
+ vtkWriter.write(rank);
+ vtkWriter.createMasterFile();
+ }
+
+ if (iT % converter.getLatticeTime(iTwrite) == 0) {
+ vtkWriter.write(iT);
+ }
+#endif
+
+ /// Writes output on the console
+ if (iT % converter.getLatticeTime(iTwrite) == 0) {
+ timer.update(iT);
+ timer.printStep();
+ sLattice.getStatistics().print(iT, converter.getPhysTime(iT));
+ particleDynamics.print();
+ }
+}
+
+int main(int argc, char* argv[])
+{
+ /// === 1st Step: Initialization ===
+ olbInit(&argc, &argv);
+ singleton::directories().setOutputDir("./tmp/");
+ OstreamManager clout(std::cout, "main");
+
+ UnitConverterFromResolutionAndLatticeVelocity<T,DESCRIPTOR> converter(
+ (int) res, //resolution
+ ( T ) charLatticeVelocity, //charLatticeVelocity
+ ( T ) charPhysLength, //charPhysLength
+ ( T ) charPhysVelocity, //charPhysVelocity
+ ( T ) physViscosity, //physViscosity
+ ( T ) physDensity //physDensity
+ );
+ converter.print();
+
+ /// === 2rd Step: Prepare Geometry ===
+ /// Instantiation of a cuboidGeometry with weights
+ std::vector<T> extend(3, T());
+ extend[0] = lengthX;
+ extend[1] = lengthY;
+ extend[2] = lengthZ;
+ std::vector<T> origin(3, T());
+ IndicatorCuboid3D<T> cuboid(extend, origin);
+
+#ifdef PARALLEL_MODE_MPI
+ CuboidGeometry3D<T> cuboidGeometry(cuboid, converter.getConversionFactorLength(), singleton::mpi().getSize());
+#else
+ CuboidGeometry3D<T> cuboidGeometry(cuboid, converter.getConversionFactorLength(), 7);
+#endif
+ cuboidGeometry.print();
+
+ HeuristicLoadBalancer<T> loadBalancer(cuboidGeometry);
+ SuperGeometry3D<T> superGeometry(cuboidGeometry, loadBalancer, 2);
+ prepareGeometry(converter, superGeometry);
+
+ /// === 3rd Step: Prepare Lattice ===
+ SuperLattice3D<T, DESCRIPTOR> sLattice(superGeometry);
+
+ PorousParticleBGKdynamics<T, DESCRIPTOR, false> designDynamics(converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta<T, DESCRIPTOR>());
+
+ sOnLatticeBoundaryCondition3D<T, DESCRIPTOR> sBoundaryCondition(sLattice);
+ createLocalBoundaryCondition3D<T, DESCRIPTOR>(sBoundaryCondition);
+
+ prepareLattice(sLattice, converter, designDynamics, sBoundaryCondition, superGeometry);
+
+ /// === 4th Step: Main Loop with Timer ===
+ Timer<double> timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel());
+ timer.start();
+
+ // Create Particle Dynamics
+ ParticleDynamics3D<T, DESCRIPTOR> particleDynamics(sLattice, converter, superGeometry, lengthX, lengthY, lengthZ, externalAcceleration);
+
+ // Create Cube Indicator
+ T epsilon = 0.5*converter.getConversionFactorLength();
+
+ //Cube indicator
+ SmoothIndicatorCuboid3D<T, T, true> particleIndicator(cubeCenter, cubeEdgeLength, cubeEdgeLength, cubeEdgeLength, epsilon, cubeOrientation, cubeDensity, cubeVelocity);
+
+ //Sphere indicator
+ //SmoothIndicatorSphere3D<T, T, true> particleIndicator(cubeCenter, 0.5*cubeEdgeLength, epsilon, cubeDensity, cubeVelocity);
+
+ //Cylinder indicator
+ //SmoothIndicatorCylinder3D<T, T, true> particleIndicator(cubeCenter, { 1, 0, 0 }, 0.5*cubeEdgeLength, cubeEdgeLength, epsilon, cubeOrientation, cubeDensity, cubeVelocity);
+
+ SuperExternal3D<T,DESCRIPTOR,POROSITY> superExtPorosity(superGeometry, sLattice, sLattice.getOverlap());
+ SuperExternal3D<T,DESCRIPTOR,VELOCITY_NUMERATOR> superExtNumerator(superGeometry, sLattice, sLattice.getOverlap());
+ SuperExternal3D<T,DESCRIPTOR,VELOCITY_DENOMINATOR> superExtDenominator(superGeometry, sLattice, sLattice.getOverlap());
+ particleDynamics.addParticle( particleIndicator );
+ particleDynamics.print();
+
+ /// === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues(sLattice, converter, 0, superGeometry);
+
+ clout << "MaxIT: " << converter.getLatticeTime(maxPhysT) << std::endl;
+ for (int iT = 0; iT < converter.getLatticeTime(maxPhysT)+10; ++iT) {
+ particleDynamics.simulateTimestep("verlet");
+ getResults(sLattice, converter, iT, superGeometry, timer, particleDynamics);
+ sLattice.collideAndStream();
+ superExtPorosity.communicate();
+ superExtNumerator.communicate();
+ superExtDenominator.communicate();
+ }
+
+ timer.stop();
+ timer.printSummary();
+}