summaryrefslogtreecommitdiff
path: root/examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp')
-rw-r--r--examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp478
1 files changed, 478 insertions, 0 deletions
diff --git a/examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp b/examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp
new file mode 100644
index 0000000..91f3456
--- /dev/null
+++ b/examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp
@@ -0,0 +1,478 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2017 Davide Dapelo, Mathias J. Krause
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* porousPoiseuille2d.cpp:
+ * Poiseuille flow through porous media.
+ * This implementation is the reproduction of the Guo and Zhao (2002)'s
+ * benchmark example A. The theoretical maximum velocity is calculated
+ * as in Equation 21, and the velocity profile as in Equation 23 of
+ * the original reference.
+ */
+
+#include "olb2D.h"
+#include "olb2D.hh" // use only generic version!
+
+#include <vector>
+#include <cmath>
+#include <iostream>
+#include <iomanip>
+#include <fstream>
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+#define DESCRIPTOR GuoZhaoD2Q9Descriptor
+#define DYNAMICS GuoZhaoBGKdynamics
+//#define DYNAMICS SmagorinskyGuoZhaoBGKdynamics
+
+/// Functional to calculate velocity profile on pipe with porous media.
+template <typename T>
+class PorousPipe2D : public AnalyticalF2D<T,T> {
+protected:
+ std::vector<T> axisPoint;
+ std::vector<T> axisDirection;
+ T radius, rFactor, u0;
+
+public:
+ PorousPipe2D(std::vector<T> axisPoint_, std::vector<T> axisDirection_, T radius_, T rFactor_, T u0_);
+ bool operator()(T output[], const T x[]) override;
+};
+
+template <typename T>
+PorousPipe2D<T>::PorousPipe2D(std::vector<T> axisPoint_, std::vector<T> axisDirection_, T radius_, T rFactor_, T u0_)
+ : AnalyticalF2D<T,T>(2)
+{
+ this->getName() = "PorousPipe2D";
+ axisPoint.resize(2);
+ axisDirection.resize(2);
+ for (int i = 0; i < 2; ++i) {
+ axisDirection[i] = axisDirection_[i];
+ axisPoint[i] = axisPoint_[i];
+ }
+ radius = radius_;
+ rFactor = rFactor_;
+ u0 = u0_;
+}
+
+template <typename T>
+bool PorousPipe2D<T>::operator()(T output[], const T x[])
+{
+ output[0] = axisDirection[0]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[1] - rFactor*radius))/(cosh(rFactor*radius) - 1);
+ output[1] = axisDirection[1]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[0] - rFactor*radius))/(cosh(rFactor*radius) - 1);
+
+ return true;
+}
+
+/// Stores geometry information in form of material numbers
+void prepareGeometry(UnitConverter<T,DESCRIPTOR> const& converter, T lx, T ly,
+ SuperGeometry2D<T>& superGeometry)
+{
+
+ OstreamManager clout(std::cout,"prepareGeometry");
+ clout << "Prepare Geometry ..." << std::endl;
+
+ superGeometry.rename(0,2);
+
+ std::vector<T> extend(2,T());
+ extend[0] = lx;
+ extend[1] = ly - 1.8*converter.getPhysLength(1);
+ std::vector<T> origin(2,T());
+ origin[1] = 0.9*converter.getPhysLength(1);
+ IndicatorCuboid2D<T> cuboid2(extend, origin);
+
+ superGeometry.rename(2,1,cuboid2);
+
+ /// Removes all not needed boundary voxels outside the surface
+ superGeometry.clean();
+ /// Removes all not needed boundary voxels inside the surface
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+/// Set up the geometry of the simulation
+void prepareLattice(UnitConverter<T,DESCRIPTOR> const& converter, T lx, T ly,
+ T epsilonIn, T KIn, T bodyForceIn,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& sBoundaryCondition,
+ SuperGuoZhaoInstantiator2D<T, DESCRIPTOR, DYNAMICS<T, DESCRIPTOR> >& sGuoZhaoInstantiator,
+ SuperGeometry2D<T>& superGeometry )
+{
+
+ OstreamManager clout(std::cout,"prepareLattice");
+ clout << "Prepare Lattice ..." << std::endl;
+
+ T omega = converter.getLatticeRelaxationFrequency();
+
+ /// Material=0 -->do nothing
+ sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>());
+
+ /// Material=1 -->bulk dynamics
+ sLattice.defineDynamics(superGeometry, 1, &bulkDynamics);
+
+ /// Material=2 -->bulk dynamics
+ sLattice.defineDynamics(superGeometry, 2, &bulkDynamics);
+
+ /// Setting of the boundary conditions
+ sBoundaryCondition.addVelocityBoundary(superGeometry, 2, omega);
+
+ /// Initial conditions
+ std::vector<T> epsilonValue(1, epsilonIn);
+ AnalyticalConst2D<T,T> epsilon(epsilonValue);
+
+ std::vector<T> KValue(1, KIn);
+ AnalyticalConst2D<T,T> K(KValue);
+
+ std::vector<T> bodyForceValue (2, (T)0);
+ bodyForceValue[0] = bodyForceIn;
+ AnalyticalConst2D<T,T> bodyForce(bodyForceValue);
+
+ // Initialize porosity
+ sGuoZhaoInstantiator.defineEpsilon(superGeometry, 1, epsilon);
+ sGuoZhaoInstantiator.defineEpsilon(superGeometry, 2, epsilon);
+
+ sGuoZhaoInstantiator.defineK(converter, superGeometry, 1, K);
+ sGuoZhaoInstantiator.defineK(converter, superGeometry, 2, K);
+
+ sGuoZhaoInstantiator.defineNu(converter, superGeometry, 1);
+ sGuoZhaoInstantiator.defineNu(converter, superGeometry, 2);
+
+ sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 1, bodyForce);
+ sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 2, bodyForce);
+
+ /// Make the lattice ready for simulation
+ clout << "Ready to initialize the lattice..." << std::endl;
+ sLattice.initialize();
+
+ clout << "Prepare Lattice ... OK" << std::endl;
+}
+
+/// Compute error norms
+void error( SuperGeometry2D<T>& superGeometry,
+ SuperLattice2D<T, DESCRIPTOR>& sLattice,
+ UnitConverter<T,DESCRIPTOR> const& converter,
+ Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ AnalyticalF2D<T,T>& uSol) {
+
+ OstreamManager clout( std::cout,"error" );
+
+ int input[1] = { };
+ T result[1] = { };
+
+ SuperLatticePhysVelocity2D<T,DESCRIPTOR> u( sLattice,converter );
+ auto indicatorF = superGeometry.getMaterialIndicator(1);
+
+ // velocity error
+ SuperAbsoluteErrorL1Norm2D<T> absVelocityErrorNormL1(u, uSol, indicatorF);
+ absVelocityErrorNormL1(result, input);
+ clout << "velocity-L1-error(abs)=" << result[0];
+ SuperRelativeErrorL1Norm2D<T> relVelocityErrorNormL1(u, uSol, indicatorF);
+ relVelocityErrorNormL1(result, input);
+ clout << "; velocity-L1-error(rel)=" << result[0] << std::endl;
+
+ SuperAbsoluteErrorL2Norm2D<T> absVelocityErrorNormL2(u, uSol, indicatorF);
+ absVelocityErrorNormL2(result, input);
+ clout << "velocity-L2-error(abs)=" << result[0];
+ SuperRelativeErrorL2Norm2D<T> relVelocityErrorNormL2(u, uSol, indicatorF);
+ relVelocityErrorNormL2(result, input);
+ clout << "; velocity-L2-error(rel)=" << result[0] << std::endl;
+
+ SuperAbsoluteErrorLinfNorm2D<T> absVelocityErrorNormLinf(u, uSol, indicatorF);
+ absVelocityErrorNormLinf(result, input);
+ clout << "velocity-Linf-error(abs)=" << result[0] << std::endl;
+}
+
+/// Output to console and files
+void getResults(SuperLattice2D<T,DESCRIPTOR>& sLattice, Dynamics<T, DESCRIPTOR>& bulkDynamics,
+ UnitConverter<T,DESCRIPTOR> const& converter, T lx, T ly, T G, T K, T nu, T epsilon, T maxPhysT, int iT, int numOfIterations,
+ SuperGeometry2D<T>& superGeometry, Timer<T>& timer, bool hasConverged)
+{
+
+ OstreamManager clout(std::cout,"getResults");
+
+ SuperVTMwriter2D<T> vtkWriter("porousPoiseuille2d");
+ SuperLatticePhysVelocity2D<T, DESCRIPTOR> velocity(sLattice, converter);
+ SuperLatticePhysPressure2D<T, DESCRIPTOR> pressure(sLattice, converter);
+// SuperLatticeEpsilon2D<T, DESCRIPTOR> epsilonVTM(sLattice, converter);
+// SuperLatticePhysK2D<T, DESCRIPTOR> KVTM(sLattice, converter);
+// SuperLatticePhysBodyForce2D<T, DESCRIPTOR> bodyForce(sLattice, converter);
+ vtkWriter.addFunctor( velocity );
+ vtkWriter.addFunctor( pressure );
+// vtkWriter.addFunctor( epsilonVTM );
+// vtkWriter.addFunctor( KVTM );
+// vtkWriter.addFunctor( bodyForce );
+
+ const int vtkIter = converter.getLatticeTime(maxPhysT/numOfIterations);
+ const int statIter = converter.getLatticeTime(maxPhysT/numOfIterations);
+
+ static Gnuplot<T> gplot_uCentre( "uCentre" );
+ static Gnuplot<T> gplot_profile( "profile" );
+
+ if (iT==0) {
+ /// Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry2D<T, DESCRIPTOR> geometry(sLattice, superGeometry);
+ SuperLatticeCuboid2D<T, DESCRIPTOR> cuboid(sLattice);
+ SuperLatticeRank2D<T, DESCRIPTOR> rank(sLattice);
+ superGeometry.rename(0,2);
+ vtkWriter.write(geometry);
+ vtkWriter.write(cuboid);
+ vtkWriter.write(rank);
+
+ vtkWriter.createMasterFile();
+ }
+
+ /// Writes the vtk files and profile text file
+ T Ly = converter.getLatticeLength(ly);
+ AnalyticalFfromSuperF2D<T> intpolateVelocity( velocity, true );
+ T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2};
+ T uCentre[2];
+ intpolateVelocity(uCentre, centre);
+ T r = sqrt(epsilon/K);
+ T dx = converter.getPhysDeltaX();
+ const T radius = ly/2.;
+ std::vector<T> axisPoint(2,T());
+ axisPoint[0] = lx/2.;
+ axisPoint[1] = ly/2.;
+ std::vector<T> axisDirection(2,T());
+ axisDirection[0] = 1;
+ axisDirection[1] = 0;
+ PorousPipe2D<T> uSol(axisPoint, axisDirection, radius, r, uCentre[0]);
+
+
+ if (iT%vtkIter==0 || hasConverged) {
+ vtkWriter.write(iT);
+
+ SuperEuklidNorm2D<T, DESCRIPTOR> normVel(velocity);
+ BlockReduction2D2D<T> planeReduction( normVel, 600, BlockDataSyncMode::ReduceOnly );
+ // write output of velocity as JPEG
+ heatmap::write(planeReduction, iT);
+
+ ofstream *ofile = nullptr;
+ if (singleton::mpi().isMainProcessor()) {
+ ofile = new ofstream((singleton::directories().getLogOutDir()+"centerVel.dat").c_str());
+ }
+ for (int iY=0; iY<=Ly; ++iY) {
+ T point[2]= {T(),T()};
+ point[0] = lx/2.;
+ point[1] = (T)iY*converter.getPhysLength(1);
+ T analytical[2] = {T(),T()};
+ uSol(analytical,point);
+ SuperLatticePhysVelocity2D<T, DESCRIPTOR> velocity(sLattice, converter);
+ AnalyticalFfromSuperF2D<T> intpolateVelocity(velocity, true);
+ T numerical[2] = {T(),T()};
+ intpolateVelocity(numerical,point);
+ if (singleton::mpi().isMainProcessor()) {
+ *ofile << iY*dx << " " << analytical[0]
+ << " " << numerical[0] << "\n";
+ if ( iT == .8*converter.getLatticeTime( maxPhysT ) ) {
+// if ( iT == converter.numTimeSteps( maxPhysT )-1 ) {
+ gplot_profile.setData( point[1], {numerical[0], analytical[0]}, {"Numerical profile", "Analytical profile"}, "bottom right" );
+ gplot_profile.writePNG();
+ }
+ }
+ }
+ delete ofile;
+ }
+
+ /// Writes output on the console
+ if (iT%statIter==0 || hasConverged) {
+ /// Timer console output
+ timer.update(iT);
+ timer.printStep();
+
+ /// Lattice statistics console output
+ sLattice.getStatistics().print(iT,converter.getPhysTime(iT));
+
+ /// Error norms
+ error(superGeometry, sLattice, converter, bulkDynamics, uSol);
+
+ AnalyticalFfromSuperF2D<T> intpolatePressure( pressure, true );
+ AnalyticalFfromSuperF2D<T> intpolateVelocity( velocity, true );
+ T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2};
+ T uCentre[2];
+ intpolateVelocity(uCentre, centre);
+
+ T uMaxMeas = sLattice.getStatistics().getMaxU() / converter.getCharLatticeVelocity();
+ T uMaxTheo = G*K/nu*(1.-1./cosh(converter.getCharPhysLength()/2 * sqrt(epsilon/K)));
+ clout << "uMaxTheo=" << uMaxTheo
+ << "; uMaxMeas=" << uMaxMeas
+ << "; uCentre=" << uCentre[0]
+ << std::endl;
+
+ gplot_uCentre.setData( converter.getPhysTime( iT ), uCentre[0], "Centre velocity", "bottom right" );
+ gplot_uCentre.writePNG( iT, maxPhysT );
+ }
+}
+
+int main(int argc, char* argv[])
+{
+
+ /// === 1st Step: Initialization ===
+ olbInit(&argc, &argv);
+ singleton::directories().setOutputDir("./tmp/");
+ OstreamManager clout(std::cout,"main");
+ // display messages from every single mpi process
+ //clout.setMultiOutput(true);
+
+ // Parameters for the simulation setup
+ int nx; // length of the channel
+ int ny; // height of the channel
+ int N; // resolution of the model
+ T tau; // Relaxation time
+ T Re; // Reynolds number
+ T Da; // Darcy number
+
+ T epsilon; // Porosity (non-dimensional)
+ T K; // Permeability (SI units)
+
+ T maxPhysT; // max. simulation time in s, SI unit
+ int numOfIterations; // number of iterations reported in paraview-Gnuplot.
+ T residuum;
+
+ string fName("input.xml");
+ XMLreader config(fName);
+
+ config["setup"]["nx"].read(nx);
+ config["setup"]["ny"].read(ny);
+ config["setup"]["tau"].read(tau);
+ config["setup"]["N"].read(N);
+ config["setup"]["Da"].read(Da);
+ config["setup"]["Re"].read(Re);
+ config["porous"]["epsilon"].read(epsilon);
+ config["porous"]["K"].read(K);
+ config["time"]["maxPhysT"].read(maxPhysT);
+ config["time"]["numOfIterations"].read(numOfIterations);
+ config["convergence"]["residuum"].read(residuum);
+
+ T charL = sqrt(K/Da);
+ T lx = nx*charL;
+ T ly = ny*charL;
+
+ //T latticeU = Re*(tau-(T).5)/((T)3*N);
+ T charU = (T)1.;
+ T bodyForceValue = charU*charU*charL / ( Re*K*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K))) );
+ T nu = bodyForceValue*K/charU*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K)));
+
+ UnitConverterFromResolutionAndRelaxationTime<T, DESCRIPTOR> const converter(
+ int {N}, // resolution: number of voxels per charPhysL
+ (T) tau, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
+ (T) charL, // charPhysLength: reference length of simulation geometry
+ (T) charU, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
+ (T) nu, // physViscosity: physical kinematic viscosity in __m^2 / s__
+ (T) 1.0 // physDensity: physical density in __kg / m^3__
+ );
+ // Prints the converter log as console output
+ converter.print();
+ // Writes the converter log in a file
+ converter.write("porousPoiseuille2d");
+
+ /// === 2nd Step: Prepare Geometry ===
+ std::vector<T> extend(2,T());
+ extend[0] = lx;
+ extend[1] = ly;
+ std::vector<T> origin(2,T());
+ IndicatorCuboid2D<T> cuboid(extend, origin);
+
+ /// Instantiation of a cuboidGeometry with weights
+#ifdef PARALLEL_MODE_MPI
+ const int noOfCuboids = singleton::mpi().getSize();
+#else
+ const int noOfCuboids = 7;
+#endif
+ CuboidGeometry2D<T> cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids);
+
+ /// Periodic boundaries in x-direction
+ cuboidGeometry.setPeriodicity(true, false);
+
+ /// Instantiation of a loadBalancer
+ HeuristicLoadBalancer<T> loadBalancer(cuboidGeometry);
+
+ /// Instantiation of a superGeometry
+ SuperGeometry2D<T> superGeometry(cuboidGeometry, loadBalancer, 2);
+
+ prepareGeometry(converter, lx, ly, superGeometry);
+
+ /// === 3rd Step: Prepare Lattice ===
+ SuperLattice2D<T, DESCRIPTOR> sLattice(superGeometry);
+
+ DYNAMICS<T, DESCRIPTOR> bulkDynamics (
+ converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,DESCRIPTOR>()
+ );
+
+ SuperGuoZhaoInstantiator2D<T, DESCRIPTOR, DYNAMICS<T, DESCRIPTOR> > sGuoZhaoInstantiator(sLattice);
+
+ // choose between local and non-local boundary condition
+ sOnLatticeBoundaryCondition2D<T, DESCRIPTOR> sBoundaryCondition(sLattice);
+ createInterpBoundaryCondition2D<T, DESCRIPTOR, DYNAMICS<T, DESCRIPTOR> > (sBoundaryCondition);
+
+ prepareLattice(converter, lx, ly, epsilon, K, bodyForceValue, sLattice, bulkDynamics, sBoundaryCondition, sGuoZhaoInstantiator, superGeometry);
+
+ SuperExternal2D<T, DESCRIPTOR, descriptors::FORCE> externalForce(superGeometry, sLattice, 2);
+ SuperExternal2D<T, DESCRIPTOR, descriptors::EPSILON> externalEpsilon(superGeometry, sLattice, 2);
+ SuperExternal2D<T, DESCRIPTOR, descriptors::K> externalK(superGeometry, sLattice, 2);
+ SuperExternal2D<T, DESCRIPTOR, descriptors::NU> externalNu(superGeometry, sLattice, 2);
+ SuperExternal2D<T, DESCRIPTOR, descriptors::BODY_FORCE> externalBodyForce(superGeometry, sLattice, 2);
+
+ /// === 4th Step: Main Loop with Timer ===
+ clout << "starting simulation..." << endl;
+ Timer<T> timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
+ util::ValueTracer<T> converge( converter.getLatticeTime(maxPhysT/numOfIterations), residuum );
+ timer.start();
+
+ for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
+ if ( converge.hasConverged() ) {
+ clout << "Simulation converged." << endl;
+ getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() );
+ break;
+ }
+
+ /// === 5th Step: Definition of Initial and Boundary Conditions ===
+ // in this application no boundary conditions have to be adjusted
+
+ /// === 6th Step: Collide and Stream Execution ===
+ sLattice.collideAndStream();
+
+ externalForce.communicate();
+ externalEpsilon.communicate();
+ externalK.communicate();
+ externalNu.communicate();
+ externalBodyForce.communicate();
+
+ /// === 7th Step: Computation and Output of the Results ===
+ getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() );
+ converge.takeValue( sLattice.getStatistics().getAverageEnergy(), true );
+ }
+
+ timer.stop();
+ timer.printSummary();
+}
+