summaryrefslogtreecommitdiff
path: root/examples/thermal/porousPlate2d
diff options
context:
space:
mode:
Diffstat (limited to 'examples/thermal/porousPlate2d')
-rw-r--r--examples/thermal/porousPlate2d/Makefile113
-rw-r--r--examples/thermal/porousPlate2d/definitions.mk30
-rw-r--r--examples/thermal/porousPlate2d/module.mk29
-rw-r--r--examples/thermal/porousPlate2d/thermalPorousPlate2d.cpp524
4 files changed, 696 insertions, 0 deletions
diff --git a/examples/thermal/porousPlate2d/Makefile b/examples/thermal/porousPlate2d/Makefile
new file mode 100644
index 0000000..345217e
--- /dev/null
+++ b/examples/thermal/porousPlate2d/Makefile
@@ -0,0 +1,113 @@
+# This file is part of the OpenLB library
+#
+# Copyright (C) 2007 Mathias Krause
+# E-mail contact: info@openlb.net
+# The most recent release of OpenLB can be downloaded at
+# <http://www.openlb.net/>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public
+# License along with this program; if not, write to the Free
+# Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+# Boston, MA 02110-1301, USA.
+
+
+###########################################################################
+###########################################################################
+## DEFINITIONS TO BE CHANGED
+
+ROOT := ../../..
+SRC :=
+OUTPUT := thermalPorousPlate2d
+
+###########################################################################
+## definitions
+
+include $(ROOT)/global.mk
+
+OBJECTS := $(foreach file, $(SRC) $(OUTPUT), $(PWD)/$(file).o)
+DEPS := $(foreach file, $(SRC) $(OUTPUT), $(PWD)/$(file).d)
+
+###########################################################################
+## all
+
+all : depend compile updatelib link
+
+
+###########################################################################
+## dependencies
+
+depend : $(DEPS)
+
+$(PWD)/%.d : %.cpp
+ @echo Create dependencies for $<
+ @$(SHELL) -ec '$(CXX) -M $(CXXFLAGS) $(IDIR) $< \
+ | sed -e "s!$*\.o!$(PWD)\/$*\.o!1" > .tmpfile; \
+ cp -f .tmpfile $@;'
+
+###########################################################################
+## compile
+
+compile : $(OBJECTS)
+
+$(PWD)/%.o: %.cpp
+ @echo Compile $<
+ $(CXX) $(CXXFLAGS) $(IDIR) -c $< -o $@
+
+###########################################################################
+## clean
+
+clean : cleanrub cleanobj cleandep
+
+cleanrub:
+ @echo Clean rubbish files
+ @rm -f *~ core .tmpfile tmp/*.* $(OUTPUT)
+ @rm -f tmp/vtkData/*.* tmp/vtkData/data/*.* tmp/imageData/*.* tmp/gnuplotData/*.* tmp/gnuplotData/data/*.*
+
+cleanobj:
+ @echo Clean object files
+ @rm -f $(OBJECTS)
+
+cleandep:
+ @echo Clean dependencies files
+ @rm -f $(DEPS)
+
+cleanbuild:
+ @echo Clean olb main
+ @cd $(ROOT); \
+ $(MAKE) cleanbuild;
+
+###########################################################################
+## update lib
+
+updatelib :
+ @cd $(ROOT); \
+ $(MAKE) all;
+
+###########################################################################
+## link
+
+link: $(OUTPUT)
+
+$(OUTPUT): $(OBJECTS) $(ROOT)/$(LIBDIR)/lib$(LIB).a
+ @echo Link $@
+ $(CXX) $(foreach file, $(SRC), $(file).o) $@.o $(LDFLAGS) -L$(ROOT)/$(LIBDIR) $(LIBS) -o $@
+
+###########################################################################
+## include dependencies
+
+ifneq "$(strip $(wildcard *.d))" ""
+ include $(foreach file,$(DEPS),$(file))
+endif
+
+###########################################################################
+###########################################################################
diff --git a/examples/thermal/porousPlate2d/definitions.mk b/examples/thermal/porousPlate2d/definitions.mk
new file mode 100644
index 0000000..d5858ad
--- /dev/null
+++ b/examples/thermal/porousPlate2d/definitions.mk
@@ -0,0 +1,30 @@
+# This file is part of the OpenLB library
+#
+# Copyright (C) 2007 Mathias Krause
+# E-mail contact: info@openlb.net
+# The most recent release of OpenLB can be downloaded at
+# <http://www.openlb.net/>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public
+# License along with this program; if not, write to the Free
+# Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+# Boston, MA 02110-1301, USA.
+
+
+###########################################################################
+###########################################################################
+## DEFINITIONS TO BE CHANGED
+
+ROOT := ../../..
+SRC := thermalPorousPlate2d.cpp
+OUTPUT := thermalPorousPlate2d
diff --git a/examples/thermal/porousPlate2d/module.mk b/examples/thermal/porousPlate2d/module.mk
new file mode 100644
index 0000000..1190482
--- /dev/null
+++ b/examples/thermal/porousPlate2d/module.mk
@@ -0,0 +1,29 @@
+# This file is part of the OpenLB library
+#
+# Copyright (C) 2017 Markus Mohrhard
+# E-mail contact: info@openlb.net
+# The most recent release of OpenLB can be downloaded at
+# <http://www.openlb.net/>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public
+# License along with this program; if not, write to the Free
+# Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+# Boston, MA 02110-1301, USA.
+
+current_dir := $(dir $(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST)))
+
+include global.mk
+include rules.mk
+include $(addsuffix definitions.mk, $(current_dir))
+
+$(eval $(call sample,$(current_dir)$(OUTPUT),$(addprefix $(current_dir), $(SRC))))
diff --git a/examples/thermal/porousPlate2d/thermalPorousPlate2d.cpp b/examples/thermal/porousPlate2d/thermalPorousPlate2d.cpp
new file mode 100644
index 0000000..e7d859e
--- /dev/null
+++ b/examples/thermal/porousPlate2d/thermalPorousPlate2d.cpp
@@ -0,0 +1,524 @@
+/* Lattice Boltzmann sample, written in C++, using the OpenLB
+ * library
+ *
+ * Copyright (C) 2008 Orestis Malaspinas
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ */
+
+/* rayleighBenard2d.cpp:
+ * Rayleigh-Benard convection rolls in 2D, simulated with
+ * the thermal LB model by Z. Guo e.a., between a hot plate at
+ * the bottom and a cold plate at the top.
+ */
+
+
+#include "olb2D.h"
+#include "olb2D.hh" // use only generic version!
+#include <vector>
+#include <cmath>
+#include <iostream>
+#include <iomanip>
+#include <fstream>
+
+
+using namespace olb;
+using namespace olb::descriptors;
+using namespace olb::graphics;
+using namespace std;
+
+typedef double T;
+
+#define NSDESCRIPTOR D2Q9<FORCE>
+#define TDESCRIPTOR D2Q5<VELOCITY>
+
+// #define TemperatureBoundary
+// #define RegularizedTemperatureBoundary
+#define RegularizedHeatFluxBoundary
+
+// const int maxIter = 1000000;
+// const int saveIter = 5000;
+
+// Parameters for the simulation setup
+const T lx = 1.; // length of the channel
+const T ly = 1.; // height of the channel
+int N = 20; // resolution of the model
+T tau = 1.; // relaxation time
+const T Re = 20.; // Reynolds number
+const T Ra = 100.; // Rayleigh number
+const T Pr = 0.71; // Prandtl number
+const T maxPhysT = 1e4; // max. simulation time in s, SI unit
+const T epsilon = 1.e-7; // precision of the convergence (residuum)
+
+const T Tcold = 273.15;
+const T Thot = 274.15;
+
+int iT;
+
+// analytical solution from point light source in infinte domain
+// appliacation from R3 to R1.
+// effective for x in R3, only the distance to (0,0) is needed.
+// documentation e.g. Biomedical Optics, Lihong V. Wang Hsin-I Wu
+template <typename T, typename S>
+class AnalyticalVelocityPorousPlate2D : public AnalyticalF2D<T, S> {
+private:
+ T _Re;
+ T _u0;
+ T _v0;
+ T _ly;
+public:
+ AnalyticalVelocityPorousPlate2D(T Re, T u0, T v0, T ly) : AnalyticalF2D<T, S>(2),
+ _Re(Re), _u0(u0), _v0(v0), _ly(ly)
+ {
+ this->getName() = "AnalyticalVelocityPorousPlate2D";
+ };
+
+ bool operator()(T output[2], const S x[2])
+ {
+ output[0] = _u0*((exp(_Re* x[1] / _ly) - 1) / (exp(_Re) - 1));
+ output[1] = _v0;
+ return true;
+ };
+};
+
+template <typename T, typename S>
+class AnalyticalTemperaturePorousPlate2D : public AnalyticalF2D<T, S> {
+private:
+ T _Re;
+ T _Pr;
+ T _ly;
+ T _T0;
+ T _deltaT;
+public:
+ AnalyticalTemperaturePorousPlate2D(T Re, T Pr, T ly, T T0, T deltaT) : AnalyticalF2D<T, S>(1),
+ _Re(Re), _Pr(Pr), _ly(ly), _T0(T0), _deltaT(deltaT)
+ {
+ this->getName() = "AnalyticalTemperaturePorousPlate2D";
+ };
+
+ bool operator()(T output[1], const S x[2])
+ {
+ output[0] = _T0 + _deltaT*((exp(_Pr*_Re*x[1] / _ly) - 1) / (exp(_Pr*_Re) - 1));
+ return true;
+ };
+};
+
+template <typename T, typename S>
+class AnalyticalHeatFluxPorousPlate2D : public AnalyticalF2D<T, S> {
+private:
+ T _Re;
+ T _Pr;
+ T _deltaT;
+ T _ly;
+ T _lambda;
+public:
+ AnalyticalHeatFluxPorousPlate2D(T Re, T Pr, T deltaT, T ly,T lambda) : AnalyticalF2D<T, S>(2),
+ _Re(Re), _Pr(Pr), _deltaT(deltaT), _ly(ly), _lambda(lambda)
+ {
+ this->getName() = "AnalyticalHeatFluxPorousPlate2D";
+ };
+
+ bool operator()(T output[2], const S x[2])
+ {
+ output[0] = 0;
+ output[1] = - _lambda * _Re * _Pr * _deltaT / _ly * (exp(_Pr * _Re * x[1] / _ly))/(exp(_Pr * _Re) - 1);
+ return true;
+ };
+};
+
+void error( SuperGeometry2D<T>& superGeometry,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice,
+ ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter,
+ T Re )
+{
+ OstreamManager clout( std::cout, "error" );
+
+ int input[1] = { };
+ T result[1] = { };
+
+ auto indicatorF = superGeometry.getMaterialIndicator({1, 2, 3});
+
+ T u_Re = Re * converter.getPhysViscosity() / converter.getCharPhysLength();
+ AnalyticalVelocityPorousPlate2D<T,T> uSol(Re, converter.getCharPhysVelocity(), u_Re, converter.getCharPhysLength());
+ SuperLatticePhysVelocity2D<T,NSDESCRIPTOR> u(NSlattice,converter);
+
+ SuperAbsoluteErrorL2Norm2D<T> absVelocityErrorNormL2(u, uSol, indicatorF);
+ absVelocityErrorNormL2(result, input);
+ clout << "velocity-L2-error(abs)=" << result[0];
+ SuperRelativeErrorL2Norm2D<T> relVelocityErrorNormL2(u, uSol, indicatorF);
+ relVelocityErrorNormL2(result, input);
+ clout << "; velocity-L2-error(rel)=" << result[0] << std::endl;
+
+ AnalyticalTemperaturePorousPlate2D<T,T> tSol(Re, Pr, converter.getCharPhysLength(), converter.getCharPhysLowTemperature(), converter.getCharPhysTemperatureDifference());
+ SuperLatticePhysTemperature2D<T,NSDESCRIPTOR,TDESCRIPTOR> t(ADlattice,converter);
+
+ SuperAbsoluteErrorL2Norm2D<T> absTemperatureErrorNormL2(t, tSol, indicatorF);
+ absTemperatureErrorNormL2(result, input);
+ clout << "temperature-L2-error(abs)=" << result[0];
+ SuperRelativeErrorL2Norm2D<T> relTemperatureErrorNormL2(t, tSol, indicatorF);
+ relTemperatureErrorNormL2(result, input);
+ clout << "; temperature-L2-error(rel)=" << result[0] << std::endl;
+
+ AnalyticalHeatFluxPorousPlate2D<T,T> HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
+ SuperLatticePhysHeatFlux2D<T,NSDESCRIPTOR,TDESCRIPTOR> HeatFlux(ADlattice,converter);
+
+ SuperAbsoluteErrorL2Norm2D<T> absHeatFluxErrorNormL2(HeatFlux, HeatFluxSol, indicatorF);
+ absHeatFluxErrorNormL2(result, input);
+ clout << "heatFlux-L2-error(abs)=" << result[0];
+ SuperRelativeErrorL2Norm2D<T> relHeatFluxErrorNormL2(HeatFlux, HeatFluxSol, indicatorF);
+ relHeatFluxErrorNormL2(result, input);
+ clout << "; heatFlux-L2-error(rel)=" << result[0] << std::endl;
+}
+
+/// Stores geometry information in form of material numbers
+void prepareGeometry(SuperGeometry2D<T>& superGeometry,
+ ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter)
+{
+
+ OstreamManager clout(std::cout,"prepareGeometry");
+ clout << "Prepare Geometry ..." << std::endl;
+
+ superGeometry.rename(0,2);
+ superGeometry.rename(2,1,0,1);
+
+ std::vector<T> extend( 2, T(0) );
+ extend[0] = lx+2*converter.getPhysLength(1);
+ extend[1] = converter.getPhysLength(1);
+ std::vector<T> origin( 2, T(0) );
+ origin[0] = -converter.getPhysLength(1);
+ IndicatorCuboid2D<T> bottom(extend, origin);
+ /// Set material number for bottom
+ superGeometry.rename(2,3,1,bottom);
+
+ /// Removes all not needed boundary voxels outside the surface
+ superGeometry.clean();
+ /// Removes all not needed boundary voxels inside the surface
+ superGeometry.innerClean();
+ superGeometry.checkForErrors();
+
+ superGeometry.print();
+
+ clout << "Prepare Geometry ... OK" << std::endl;
+}
+
+void prepareLattice( ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice,
+ Dynamics<T, NSDESCRIPTOR> &bulkDynamics,
+ Dynamics<T, TDESCRIPTOR>& advectionDiffusionBulkDynamics,
+ sOnLatticeBoundaryCondition2D<T,NSDESCRIPTOR>& NSboundaryCondition,
+ sOnLatticeBoundaryCondition2D<T,TDESCRIPTOR>& TboundaryCondition,
+ SuperGeometry2D<T>& superGeometry )
+{
+
+ OstreamManager clout(std::cout,"prepareLattice");
+
+ T Tomega = converter.getLatticeThermalRelaxationFrequency();
+ T NSomega = converter.getLatticeRelaxationFrequency();
+
+ /// define lattice Dynamics
+ clout << "defining dynamics" << endl;
+
+ ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics<T, TDESCRIPTOR>());
+ NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics<T, NSDESCRIPTOR>());
+
+ ADlattice.defineDynamics(superGeometry, 1, &advectionDiffusionBulkDynamics);
+ ADlattice.defineDynamics(superGeometry, 2, &advectionDiffusionBulkDynamics);
+ ADlattice.defineDynamics(superGeometry, 3, &advectionDiffusionBulkDynamics);
+ NSlattice.defineDynamics(superGeometry, 1, &bulkDynamics);
+ NSlattice.defineDynamics(superGeometry, 2, &bulkDynamics);
+ NSlattice.defineDynamics(superGeometry, 3, &bulkDynamics);
+
+
+ /// sets boundary
+ NSboundaryCondition.addVelocityBoundary(superGeometry, 2, NSomega);
+ NSboundaryCondition.addVelocityBoundary(superGeometry, 3, NSomega);
+
+ #ifdef TemperatureBoundary
+ TboundaryCondition.addTemperatureBoundary(superGeometry, 2, Tomega);
+ TboundaryCondition.addTemperatureBoundary(superGeometry, 3, Tomega);
+ #endif
+ #ifdef RegularizedTemperatureBoundary
+ TboundaryCondition.addRegularizedTemperatureBoundary(superGeometry, 2, Tomega);
+ TboundaryCondition.addRegularizedTemperatureBoundary(superGeometry, 3, Tomega);
+ #endif
+ #ifdef RegularizedHeatFluxBoundary
+ T heatFlux[2];
+ T input[2] = {0.,1.};
+ AnalyticalHeatFluxPorousPlate2D<T,T> HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
+ HeatFluxSol(heatFlux, input);
+ T temp = converter.getLatticeSpecificHeatCapacity(converter.getPhysSpecificHeatCapacity())*(converter.getLatticeThermalRelaxationTime() - 0.5) / converter.getLatticeThermalRelaxationTime();
+ heatFlux[0] = converter.getLatticeHeatFlux(heatFlux[0]) / temp;
+ heatFlux[1] = converter.getLatticeHeatFlux(heatFlux[1]) / temp;
+ TboundaryCondition.addRegularizedHeatFluxBoundary(superGeometry, 2, Tomega, heatFlux);
+ TboundaryCondition.addRegularizedTemperatureBoundary(superGeometry, 3, Tomega);
+ #endif
+}
+
+void setBoundaryValues(ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice,
+ int iT, SuperGeometry2D<T>& superGeometry)
+{
+
+ if (iT == 0) {
+
+ // typedef advectionDiffusionLbHelpers<T,TDESCRIPTOR> TlbH;
+
+ /// for each material set the defineRhoU and the Equilibrium
+ std::vector<T> zero(2,T());
+ AnalyticalConst2D<T,T> u(zero);
+ AnalyticalConst2D<T,T> rho(1.);
+ AnalyticalConst2D<T,T> force(zero);
+
+ T u_Re = converter.getLatticeVelocity( Re * converter.getPhysViscosity() / converter.getCharPhysLength() );
+
+ AnalyticalConst2D<T,T> u_top(converter.getCharLatticeVelocity(), u_Re);
+ AnalyticalConst2D<T,T> u_bot(0.0, u_Re);
+
+ NSlattice.defineRhoU(superGeometry, 1, rho, u);
+ NSlattice.iniEquilibrium(superGeometry, 1, rho, u);
+ NSlattice.defineField<descriptors::FORCE>(superGeometry, 1, force);
+ NSlattice.defineRhoU(superGeometry, 2, rho, u_top);
+ NSlattice.iniEquilibrium(superGeometry, 2, rho, u_top);
+ NSlattice.defineField<descriptors::FORCE>(superGeometry, 2, force);
+ NSlattice.defineRhoU(superGeometry, 3, rho, u_bot);
+ NSlattice.iniEquilibrium(superGeometry, 3, rho, u_bot);
+ NSlattice.defineField<descriptors::FORCE>(superGeometry, 3, force);
+
+ AnalyticalConst2D<T,T> Cold(converter.getLatticeTemperature(Tcold));
+ AnalyticalConst2D<T,T> Hot(converter.getLatticeTemperature(Thot));
+
+ ADlattice.defineRho(superGeometry, 1, Cold);
+ ADlattice.iniEquilibrium(superGeometry, 1, Cold, u);
+ ADlattice.defineField<descriptors::VELOCITY>(superGeometry, 1, u);
+ ADlattice.defineRhoU(superGeometry, 2, Hot, u_top);
+ ADlattice.iniEquilibrium(superGeometry, 2, Hot, u_top);
+ ADlattice.defineField<descriptors::VELOCITY>(superGeometry, 2, u);
+ ADlattice.defineRhoU(superGeometry, 3, Cold, u_bot);
+ ADlattice.iniEquilibrium(superGeometry, 3, Cold, u_bot);
+ ADlattice.defineField<descriptors::VELOCITY>(superGeometry, 3, u);
+
+ /// Make the lattice ready for simulation
+ NSlattice.initialize();
+ ADlattice.initialize();
+ }
+}
+
+void getResults(ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const& converter,
+ SuperLattice2D<T, NSDESCRIPTOR>& NSlattice,
+ SuperLattice2D<T, TDESCRIPTOR>& ADlattice, int iT,
+ SuperGeometry2D<T>& superGeometry,
+ Timer<T>& timer,
+ bool converged)
+{
+
+ OstreamManager clout(std::cout,"getResults");
+
+ SuperVTMwriter2D<T> vtkWriter("thermalPorousPlate2d");
+ SuperLatticeGeometry2D<T, NSDESCRIPTOR> geometry2(NSlattice, superGeometry);
+ SuperLatticePhysVelocity2D<T, NSDESCRIPTOR> velocity(NSlattice, converter);
+ SuperLatticePhysPressure2D<T, NSDESCRIPTOR> pressure(NSlattice, converter);
+ SuperLatticePhysTemperature2D<T, NSDESCRIPTOR, TDESCRIPTOR> temperature(ADlattice, converter);
+ SuperLatticePhysHeatFlux2D<T, NSDESCRIPTOR, TDESCRIPTOR> heatflux(ADlattice, converter);
+
+ T u_Re = Re * converter.getPhysViscosity() / converter.getCharPhysLength();
+ AnalyticalVelocityPorousPlate2D<T,T> uSol(Re, converter.getCharPhysVelocity(), u_Re, converter.getCharPhysLength());
+ SuperLatticeFfromAnalyticalF2D<T,NSDESCRIPTOR> uSolLattice(uSol,NSlattice);
+ AnalyticalTemperaturePorousPlate2D<T,T> TSol(Re, Pr, converter.getCharPhysLength(), converter.getCharPhysLowTemperature(), converter.getCharPhysTemperatureDifference());
+ SuperLatticeFfromAnalyticalF2D<T,TDESCRIPTOR> TSolLattice(TSol,ADlattice);
+ AnalyticalHeatFluxPorousPlate2D<T,T> HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
+ SuperLatticeFfromAnalyticalF2D<T,TDESCRIPTOR> HeatFluxSolLattice(HeatFluxSol,ADlattice);
+
+ vtkWriter.addFunctor( geometry2 );
+ vtkWriter.addFunctor( pressure );
+ vtkWriter.addFunctor( velocity );
+ vtkWriter.addFunctor( temperature );
+ vtkWriter.addFunctor( heatflux );
+ vtkWriter.addFunctor( uSolLattice );
+ vtkWriter.addFunctor( TSolLattice );
+ vtkWriter.addFunctor( HeatFluxSolLattice );
+
+ const int vtkIter = converter.getLatticeTime(10.);
+
+ if (iT == 0) {
+ /// Writes the converter log file
+ // writeLogFile(converter,"thermalPorousPlate2d");
+ T tmpIn[2] = {0.,1.};
+ T tmpOut[2];
+ HeatFluxSol(tmpOut,tmpIn);
+ clout << converter.getLatticeHeatFlux(tmpOut[0]) << " " << converter.getLatticeHeatFlux(tmpOut[1]) << endl;
+ clout << tmpOut[0] << " " << tmpOut[1] << endl;
+
+ /// Writes the geometry, cuboid no. and rank no. as vti file for visualization
+ SuperLatticeGeometry2D<T, NSDESCRIPTOR> geometry(NSlattice, superGeometry);
+ SuperLatticeCuboid2D<T, NSDESCRIPTOR> cuboid(NSlattice);
+ SuperLatticeRank2D<T, NSDESCRIPTOR> rank(NSlattice);
+ vtkWriter.write(geometry);
+ vtkWriter.write(cuboid);
+ vtkWriter.write(rank);
+
+ vtkWriter.createMasterFile();
+ }
+
+ /// Writes the VTK files
+ if (iT%vtkIter == 0 || converged) {
+ NSlattice.getStatistics().print(iT,converter.getPhysTime(iT));
+ timer.print(iT);
+ error(superGeometry, NSlattice, ADlattice, converter, Re);
+
+ cout << endl << endl;
+ vtkWriter.write(iT);
+
+ ///writes Jpeg
+ //SuperEuklidNorm2D<T, DESCRIPTOR> normVel(velocity);
+ BlockReduction2D2D<T> planeReduction( temperature, 600, BlockDataSyncMode::ReduceOnly );
+ // write output of velocity as JPEG
+ heatmap::plotParam<T> jpeg_Param;
+ jpeg_Param.maxValue = Thot;
+ jpeg_Param.minValue = Tcold;
+ heatmap::write(planeReduction, iT, jpeg_Param);
+ }
+
+}
+
+int main(int argc, char *argv[])
+{
+
+ /// === 1st Step: Initialization ===
+ OstreamManager clout(std::cout,"main");
+ olbInit(&argc, &argv);
+ singleton::directories().setOutputDir("./tmp/");
+
+ if (argc >= 2) {
+ N = atoi(argv[1]);
+ }
+ if (argc == 3) {
+ tau = atof(argv[2]);
+ }
+
+ ThermalUnitConverter<T, NSDESCRIPTOR, TDESCRIPTOR> const converter(
+ (T) 1.0 / N, // physDeltaX
+ (T) 1.0 / N * 1.0 / 1e-3 * (tau - 0.5) / 3 / N, // physDeltaT
+ (T) 1.0, // charPhysLength
+ (T) sqrt( 9.81 * Ra * 1e-3 * 1e-3 / Pr / 9.81 / (Thot - Tcold) / pow(1.0, 3) * (Thot - Tcold) * 1.0 ), // charPhysVelocity
+ (T) 1e-3, // physViscosity
+ (T) 1.0, // physDensity
+ (T) 0.03, // physThermalConductivity
+ (T) Pr * 0.03 / 1e-3 / 1.0, // physSpecificHeatCapacity
+ (T) Ra * 1e-3 * 1e-3 / Pr / 9.81 / (Thot - Tcold) / pow(1.0, 3), // physThermalExpansionCoefficient
+ (T) Tcold, // charPhysLowTemperature
+ (T) Thot // charPhysHighTemperature
+ );
+ converter.print();
+
+ /// === 2nd Step: Prepare Geometry ===
+ std::vector<T> extend(2,T());
+ extend[0] = lx;
+ extend[1] = ly;
+ std::vector<T> origin(2,T());
+ IndicatorCuboid2D<T> cuboid(extend, origin);
+
+ /// Instantiation of a cuboidGeometry with weights
+#ifdef PARALLEL_MODE_MPI
+ const int noOfCuboids = singleton::mpi().getSize();
+#else
+ const int noOfCuboids = 1;
+#endif
+ CuboidGeometry2D<T> cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids);
+ cuboidGeometry.setPeriodicity(true, false);
+
+ /// Instantiation of a loadBalancer
+ HeuristicLoadBalancer<T> loadBalancer(cuboidGeometry);
+
+ /// Instantiation of a superGeometry
+ SuperGeometry2D<T> superGeometry(cuboidGeometry, loadBalancer, 2);
+
+ prepareGeometry(superGeometry, converter);
+
+ /// === 3rd Step: Prepare Lattice ===
+
+ SuperLattice2D<T, TDESCRIPTOR> ADlattice(superGeometry);
+ SuperLattice2D<T, NSDESCRIPTOR> NSlattice(superGeometry);
+
+ sOnLatticeBoundaryCondition2D<T, NSDESCRIPTOR> NSboundaryCondition(NSlattice);
+ createLocalBoundaryCondition2D<T, NSDESCRIPTOR>(NSboundaryCondition);
+
+ sOnLatticeBoundaryCondition2D<T, TDESCRIPTOR> TboundaryCondition(ADlattice);
+ createAdvectionDiffusionBoundaryCondition2D<T, TDESCRIPTOR>(TboundaryCondition);
+
+ ForcedBGKdynamics<T, NSDESCRIPTOR> NSbulkDynamics(
+ converter.getLatticeRelaxationFrequency(),
+ instances::getBulkMomenta<T,NSDESCRIPTOR>());
+
+ BGKdynamics<T, TDESCRIPTOR> TbulkDynamics (
+ converter.getLatticeThermalRelaxationFrequency(),
+ instances::getAdvectionDiffusionBulkMomenta<T,TDESCRIPTOR>()
+ );
+
+ // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
+ // This coupling must be necessarily be put on the Navier-Stokes lattice!!
+ // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
+
+ std::vector<T> dir{0.0, 1.0};
+
+ T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() *
+ converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient();
+
+ NavierStokesAdvectionDiffusionCouplingGenerator2D<T,NSDESCRIPTOR>
+ coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(ly),
+ boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir);
+
+ NSlattice.addLatticeCoupling(coupling, ADlattice);
+
+ prepareLattice(converter,
+ NSlattice, ADlattice,
+ NSbulkDynamics, TbulkDynamics,
+ NSboundaryCondition, TboundaryCondition, superGeometry );
+
+ /// === 4th Step: Main Loop with Timer ===
+ Timer<T> timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
+ timer.start();
+
+ util::ValueTracer<T> converge(converter.getLatticeTime(1.0),epsilon);
+ for (iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
+
+ if (converge.hasConverged()) {
+ clout << "Simulation converged." << endl;
+ getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
+ break;
+ }
+
+ /// === 5th Step: Definition of Initial and Boundary Conditions ===
+ setBoundaryValues(converter, NSlattice, ADlattice, iT, superGeometry);
+
+ /// === 6th Step: Collide and Stream Execution ===
+ NSlattice.collideAndStream();
+ NSlattice.executeCoupling();
+ ADlattice.collideAndStream();
+
+ /// === 7th Step: Computation and Output of the Results ===
+ getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
+ converge.takeValue(NSlattice.getStatistics().getAverageEnergy());
+ }
+
+ timer.stop();
+ timer.printSummary();
+}