summaryrefslogtreecommitdiff
path: root/src/core/radiativeUnitConverter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/radiativeUnitConverter.cpp')
-rw-r--r--src/core/radiativeUnitConverter.cpp92
1 files changed, 92 insertions, 0 deletions
diff --git a/src/core/radiativeUnitConverter.cpp b/src/core/radiativeUnitConverter.cpp
new file mode 100644
index 0000000..7413999
--- /dev/null
+++ b/src/core/radiativeUnitConverter.cpp
@@ -0,0 +1,92 @@
+/* This file is part of the OpenLB library
+ *
+ * Copyright (C) 2017 Albert Mink, Marc Haussmann
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+/** \file
+ * Function to extract refractive properties needed for boundary modeling.
+ */
+
+
+#include "core/radiativeUnitConverter.h"
+
+// definition required only by cygwin
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+/// All OpenLB code is contained in this namespace.
+namespace olb {
+
+
+
+/// Documentation of implemented functions found in 5.2.2 Biomedical Optics, Principles and Imaging; Wang 2007
+
+double getThetaRefracted(double const& thetaIncident, double const& refractiveRelative)
+{
+ double thetaRefracted = M_PI/2.;
+ if( refractiveRelative * sin(thetaIncident) < 1 ) {
+ thetaRefracted = asin( refractiveRelative * sin(thetaIncident)); // eq.(5.118)
+ }
+ return thetaRefracted;
+};
+
+double getFresnelFunction(double const& theta, double const& refractiveRelative)
+{
+ double thetaRefracted = getThetaRefracted(theta, refractiveRelative);
+ double rf_1 = 0.5 * pow((refractiveRelative * cos(thetaRefracted) - cos(theta)) /
+ (refractiveRelative * cos(thetaRefracted) + cos(theta)), 2.);
+ double rf_2 = 0.5 * pow((refractiveRelative * cos(theta) - cos(thetaRefracted)) /
+ (refractiveRelative * cos(theta) + cos(thetaRefracted)), 2.);
+ return rf_1 + rf_2; // eq.(5.115)
+};
+
+double R_phi_diff (double const& theta, double const& refractiveRelative)
+{
+ return 2. * sin(theta) * cos(theta) * getFresnelFunction(theta,refractiveRelative);
+};
+
+double R_j_diff (double const& theta, double const& refractiveRelative)
+{
+ return 3. * sin(theta) * pow(cos(theta),2.) * getFresnelFunction(theta,refractiveRelative);
+};
+
+double getRefractionFunction(const double& refractiveRelative)
+{
+ int N = 10000.0;
+ double h = (M_PI / 2.) /double(N);
+ double R_phi = 0.0;
+ double R_j = 0.0;
+ for (int i = 0; i < N; i++) {
+ R_phi += h*(R_phi_diff(0.5*h + h*i,refractiveRelative));
+ R_j += h*(R_j_diff (0.5*h + h*i,refractiveRelative));
+ }
+ double R_eff = (R_phi + R_j) / (2 - R_phi + R_j); // eq.(5.112)
+ return (1 + R_eff) / (1 - R_eff); // eq.(5.111) C_R = (1 + R_eff) / (1 - R_eff);
+};
+
+double getPartialBBCoefficient(double const& latticeDiffusionCoefficient, double const& relativeRefractiveIndex )
+{
+ double C_R = getRefractionFunction( relativeRefractiveIndex );
+ return 2 - 2/(4*latticeDiffusionCoefficient*C_R +1);
+};
+
+} // namespace olb