summaryrefslogtreecommitdiff
path: root/src/dynamics/SmagorinskyPowerLawBGKdynamics.hh
diff options
context:
space:
mode:
Diffstat (limited to 'src/dynamics/SmagorinskyPowerLawBGKdynamics.hh')
-rw-r--r--src/dynamics/SmagorinskyPowerLawBGKdynamics.hh154
1 files changed, 154 insertions, 0 deletions
diff --git a/src/dynamics/SmagorinskyPowerLawBGKdynamics.hh b/src/dynamics/SmagorinskyPowerLawBGKdynamics.hh
new file mode 100644
index 0000000..181f4d6
--- /dev/null
+++ b/src/dynamics/SmagorinskyPowerLawBGKdynamics.hh
@@ -0,0 +1,154 @@
+/* This file is part of the OpenLB library
+ *
+ * Copyright (C) 2012, 2015 Mathias J. Krause, Vojtech Cvrcekt, Davide Dapelo
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ * <http://www.openlb.net/>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+/** \file
+ * Porous-particle BGK Dynamics with adjusted omega
+ * and Smagorinsky turbulence model -- generic implementation.
+ * Strain rate similar to "J.Boyd, J. Buick and S.Green: A second-order accurate lattice Boltzmann non-Newtonian flow model"
+ * Power Law similar to "Huidan Yu, Sharath S. Girimaji, Li-Shi Luo - DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method"
+ */
+#ifndef SMAGORINSKY_POWER_LAW_BGK_DYNAMICS_HH
+#define SMAGORINSKY_POWER_LAW_BGK_DYNAMICS_HH
+
+#include "../dynamics/powerLawBGKdynamics.h"
+#include "SmagorinskyPowerLawBGKdynamics.h"
+#include "math.h"
+
+namespace olb {
+
+////////////////////// Class SmagorinskyPowerLawBGKdynamics //////////////////////////
+
+/** \param vs2_ speed of sound
+ * \param momenta_ a Momenta object to know how to compute velocity momenta
+ * \param momenta_ a Momenta object to know how to compute velocity momenta
+ */
+template<typename T, typename DESCRIPTOR>
+SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::SmagorinskyPowerLawBGKdynamics (
+ T omega, Momenta<T,DESCRIPTOR>& momenta, T m, T n , T nuMin, T nuMax, T smagoConst)
+ : SmagorinskyBGKdynamics<T,DESCRIPTOR>(omega, momenta, smagoConst),
+ PowerLawDynamics<T,DESCRIPTOR>(m, n, nuMin, nuMax)
+{ }
+
+template<typename T, typename DESCRIPTOR>
+void SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::collide (
+ Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics )
+{
+ T rho, u[DESCRIPTOR::d], pi[util::TensorVal<DESCRIPTOR >::n];
+ this->_momenta.computeAllMomenta(cell, rho, u, pi);
+
+ // Computation of the power-law omega.
+ // An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
+ T oldOmega = cell.template getFieldPointer<descriptors::OMEGA>()[0];
+ T intOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
+ T newOmega = computeEffectiveOmega(cell, intOmega); // turbulent omega
+
+ T uSqr = lbHelpers<T,DESCRIPTOR>::bgkCollision(cell, rho, u, newOmega);
+ cell.template getFieldPointer<descriptors::OMEGA>()[0] = intOmega; // updating omega
+ statistics.incrementStats(rho, uSqr);
+}
+
+template<typename T, typename DESCRIPTOR>
+T SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::computeEffectiveOmega(Cell<T,DESCRIPTOR>& cell, T omega0)
+{
+ T rho = this->_momenta.computeRho(cell);
+ T PiNeqNorm = sqrt(PiNeqNormSqr(cell));
+ /// Molecular realaxation time
+ T tau_mol = 1. /omega0;
+ /// Turbulent realaxation time
+ T tau_turb = 0.5*(sqrt(tau_mol*tau_mol + this->getPreFactor()/rho*PiNeqNorm) - tau_mol);
+ /// Effective realaxation time
+ T tau_eff = tau_mol+tau_turb;
+ T omega_new= 1./tau_eff;
+ return omega_new;
+}
+
+template<typename T, typename DESCRIPTOR>
+T SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::PiNeqNormSqr(Cell<T,DESCRIPTOR>& cell )
+{
+ return lbHelpers<T,DESCRIPTOR>::computePiNeqNormSqr(cell);
+}
+
+
+////////////////////// Class SmagorinskyPowerLawForcedBGKdynamics //////////////////////////
+
+/** \param vs2_ speed of sound
+ * \param momenta_ a Momenta object to know how to compute velocity momenta
+ * \param momenta_ a Momenta object to know how to compute velocity momenta
+ */
+template<typename T, typename DESCRIPTOR>
+SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::SmagorinskyPowerLawForcedBGKdynamics (
+ T omega, Momenta<T,DESCRIPTOR>& momenta, T m, T n , T nuMin, T nuMax, T smagoConst)
+ : SmagorinskyForcedBGKdynamics<T,DESCRIPTOR>(omega, momenta, smagoConst),
+ PowerLawDynamics<T,DESCRIPTOR>(m, n, nuMin, nuMax)
+{ }
+
+template<typename T, typename DESCRIPTOR>
+void SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::collide (
+ Cell<T,DESCRIPTOR>& cell,
+ LatticeStatistics<T>& statistics )
+{
+ T rho, u[DESCRIPTOR::d], pi[util::TensorVal<DESCRIPTOR >::n];
+ this->_momenta.computeAllMomenta(cell, rho, u, pi);
+
+ // Computation of the power-law omega.
+ // An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
+ T oldOmega = cell.template getFieldPointer<descriptors::OMEGA>()[0];
+ T intOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
+ T newOmega = computeEffectiveOmega(cell, intOmega); // turbulent omega
+
+ T* force = cell.template getFieldPointer<descriptors::FORCE>();
+ for (int iVel=0; iVel<DESCRIPTOR::d; ++iVel) {
+ u[iVel] += force[iVel] / (T)2.;
+ }
+
+ T uSqr = lbHelpers<T,DESCRIPTOR>::bgkCollision(cell, rho, u, newOmega);
+ cell.template getFieldPointer<descriptors::OMEGA>()[0] = intOmega; // updating omega
+ lbHelpers<T,DESCRIPTOR>::addExternalForce(cell, u, newOmega, rho);
+ statistics.incrementStats(rho, uSqr);
+}
+
+template<typename T, typename DESCRIPTOR>
+T SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::computeEffectiveOmega(Cell<T,DESCRIPTOR>& cell, T omega0)
+{
+ T rho = this->_momenta.computeRho(cell);
+ T PiNeqNorm = sqrt(PiNeqNormSqr(cell));
+ /// Molecular realaxation time
+ T tau_mol = 1. /omega0;
+ /// Turbulent realaxation time
+ T tau_turb = 0.5*(sqrt(tau_mol*tau_mol + this->getPreFactor()/rho*PiNeqNorm) - tau_mol);
+ /// Effective realaxation time
+ T tau_eff = tau_mol+tau_turb;
+ T omega_new= 1./tau_eff;
+ return omega_new;
+}
+
+template<typename T, typename DESCRIPTOR>
+T SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::PiNeqNormSqr(Cell<T,DESCRIPTOR>& cell )
+{
+ return lbHelpers<T,DESCRIPTOR>::computeForcedPiNeqNormSqr(cell);
+}
+
+}
+
+#endif