1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2006, 2007, 2012 Jonas Latt, Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* bstep2d.cpp:
* The implementation of a backward facing step. It is furthermore
* shown how to use checkpointing to save the state of the
* simulation regularly.
*/
#include "olb2D.h"
#ifndef OLB_PRECOMPILED // Unless precompiled version is used,
#include "olb2D.hh" // include full template code
#endif
#include <cmath>
#include <iostream>
#include <fstream>
using namespace olb;
using namespace olb::descriptors;
typedef double T;
#define DESCRIPTOR D2Q9<>
// Parameters for the simulation setup
const T lx1 = 5.0; // length of step in meter
const T ly1 = 0.75; // height of step in meter
const T lx0 = 20.0; // length of channel in meter
const T ly0 = 1.5; // height of channel in meter
const int N = 60; // resolution of the model
const int M = 50; // resolution of the model
const T maxPhysT = 40.; // max. simulation time in s, SI unit
// Stores geometry information in form of material numbers
SuperGeometry2D<T> prepareGeometry( UnitConverter<T,DESCRIPTOR> const& converter )
{
OstreamManager clout( std::cout,"prepareGeometry" );
clout << "Prepare Geometry ..." << std::endl;
// set number of cuboids/blocks
#ifdef PARALLEL_MODE_MPI
const int noOfCuboids = singleton::mpi().getSize();
#else
const int noOfCuboids = 6;
#endif
// setup channel
Vector<T,2> extendChannel( lx0,ly0 );
Vector<T,2> originChannel( 0, 0 );
std::shared_ptr<IndicatorF2D<T>> channel = std::make_shared<IndicatorCuboid2D<T>>( extendChannel, originChannel );
// setup step
Vector<T,2> extendStep( lx1,ly1 );
Vector<T,2> originStep( 0, 0 );
std::shared_ptr<IndicatorF2D<T>> step = std::make_shared<IndicatorCuboid2D<T>>( extendStep, originStep );
CuboidGeometry2D<T>* cuboidGeometry = new CuboidGeometry2D<T>( *(channel-step), converter.getConversionFactorLength(), noOfCuboids );
HeuristicLoadBalancer<T>* loadBalancer = new HeuristicLoadBalancer<T>( *cuboidGeometry );
// Instantiation of a superGeometry
SuperGeometry2D<T> superGeometry( *cuboidGeometry, *loadBalancer, 2 );
// material numbers from zero to 2 inside geometry defined by indicator
superGeometry.rename( 0,2 );
superGeometry.rename( 2,1,1,1 );
Vector<T,2> extendBC( 0,ly0 );
Vector<T,2> originBC;
IndicatorCuboid2D<T> inflow( extendBC, originBC );
// Set material number for inflow
superGeometry.rename( 2,3,1,inflow );
originBC[0] = lx0;
IndicatorCuboid2D<T> outflow( extendBC, originBC );
// Set material number for outflow
superGeometry.rename( 2,4,1,outflow );
// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.getStatistics().print();
clout << "Prepare Geometry ... OK" << std::endl;
return superGeometry;
}
// Set up the geometry of the simulation
void prepareLattice( UnitConverter<T,DESCRIPTOR> const& converter,
SuperLattice2D<T,DESCRIPTOR>& sLattice,
Dynamics<T,DESCRIPTOR>& bulkDynamics,
sOnLatticeBoundaryCondition2D<T,DESCRIPTOR>& bc,
SuperGeometry2D<T>& superGeometry ) {
OstreamManager clout( std::cout,"prepareLattice" );
clout << "Prepare Lattice ..." << std::endl;
auto bulkIndicator = superGeometry.getMaterialIndicator({1, 3, 4});
// Material=0 -->do nothing
sLattice.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T,DESCRIPTOR>() );
// Material=1 -->bulk dynamics
// Material=3 -->bulk dynamics (inflow)
// Material=4 -->bulk dynamics (outflow)
sLattice.defineDynamics( bulkIndicator, &bulkDynamics );
// Material=2 -->bounce back
sLattice.defineDynamics( superGeometry, 2, &instances::getBounceBack<T,DESCRIPTOR>() );
// Setting of the boundary conditions
bc.addVelocityBoundary( superGeometry, 3, converter.getLatticeRelaxationFrequency() );
bc.addPressureBoundary( superGeometry, 4, converter.getLatticeRelaxationFrequency() );
// Initial conditions
AnalyticalConst2D<T,T> ux( 0. );
AnalyticalConst2D<T,T> uy( 0. );
AnalyticalConst2D<T,T> rho( 1. );
AnalyticalComposed2D<T,T> u( ux,uy );
//Initialize all values of distribution functions to their local equilibrium
sLattice.defineRhoU( bulkIndicator, rho, u );
sLattice.iniEquilibrium( bulkIndicator, rho, u );
// Make the lattice ready for simulation
sLattice.initialize();
clout << "Prepare Lattice ... OK" << std::endl;
}
// Generates a slowly increasing inflow for the first iTMaxStart timesteps
void setBoundaryValues( UnitConverter<T,DESCRIPTOR> const& converter,
SuperLattice2D<T,DESCRIPTOR>& sLattice, int iT,
SuperGeometry2D<T>& superGeometry ) {
OstreamManager clout( std::cout,"setBoundaryValues" );
// time for smooth start-up
int iTmaxStart = converter.getLatticeTime( maxPhysT*0.2 );
int iTupdate = 5;
if ( iT%iTupdate == 0 && iT<= iTmaxStart ) {
// Smooth start curve, sinus
// SinusStartScale<T,int> StartScale(iTmaxStart, T(1));
// Smooth start curve, polynomial
PolynomialStartScale<T,int> StartScale( iTmaxStart, T( 1 ) );
// Creates and sets the Poiseuille inflow profile using functors
int iTvec[1] = {iT};
T frac[1] = {};
StartScale( frac,iTvec );
T maxVelocity = converter.getCharLatticeVelocity()*3./2.*frac[0];
T distance2Wall = converter.getConversionFactorLength()/2.;
Poiseuille2D<T> poiseuilleU( superGeometry, 3, maxVelocity, distance2Wall );
// define lattice speed on inflow
sLattice.defineU( superGeometry, 3, poiseuilleU );
}
}
// write data to termimal and file system
void getResults( SuperLattice2D<T,DESCRIPTOR>& sLattice,
UnitConverter<T,DESCRIPTOR> const& converter, int iT,
SuperGeometry2D<T>& superGeometry, Timer<T>& timer,
SuperPlaneIntegralFluxVelocity2D<T>& velocityFlux,
SuperPlaneIntegralFluxPressure2D<T>& pressureFlux ) {
OstreamManager clout( std::cout,"getResults" );
SuperVTMwriter2D<T> vtmWriter( "bstep2d" );
if ( iT==0 ) {
// Writes geometry, cuboid no. and rank no. to file system
SuperLatticeGeometry2D<T,DESCRIPTOR> geometry( sLattice, superGeometry );
SuperLatticeCuboid2D<T,DESCRIPTOR> cuboid( sLattice );
SuperLatticeRank2D<T,DESCRIPTOR> rank( sLattice );
vtmWriter.write( geometry );
vtmWriter.write( cuboid );
vtmWriter.write( rank );
vtmWriter.createMasterFile();
}
// Writes every 0.2 seconds
if ( iT%converter.getLatticeTime( 0.2 )==0 ) {
SuperLatticePhysVelocity2D<T,DESCRIPTOR> velocity( sLattice, converter );
SuperLatticePhysPressure2D<T,DESCRIPTOR> pressure( sLattice, converter );
vtmWriter.addFunctor( velocity );
vtmWriter.addFunctor( pressure );
// write vtk to file system
vtmWriter.write( iT );
sLattice.communicate();
SuperEuklidNorm2D<T,DESCRIPTOR> normVel( velocity );
BlockReduction2D2D<T> planeReduction( normVel, 600, BlockDataSyncMode::ReduceOnly );
// write output as JPEG
heatmap::write(planeReduction, iT);
}
// Writes every 0.1 simulated
if ( iT%converter.getLatticeTime( 0.1 )==0 ) {
velocityFlux.print();
pressureFlux.print();
// write to terminal
timer.update( iT );
timer.printStep();
// Lattice statistics console output
sLattice.getStatistics().print( iT,converter.getPhysTime( iT ) );
}
// Saves lattice data
if ( iT%converter.getLatticeTime( 1 )==0 && iT>0 ) {
clout << "Checkpointing the system at t=" << iT << std::endl;
sLattice.
|