1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2014 Mathias J. Krause, Thomas Henn,
* Cyril Masquelier
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* venturi3d.cpp:
* This example examines a steady flow in a venturi tube. At the
* main inlet, a Poiseuille profile is imposed as Dirichlet velocity
* boundary condition, whereas at the outlet and the minor inlet
* a Dirichlet pressure condition is set by p=0 (i.e. rho=1).
*
* The example shows the usage of the Indicator functors to
* build up a geometry and explains how to set boundary conditions
* automatically.
*/
#include "olb3D.h"
#ifndef OLB_PRECOMPILED // Unless precompiled version is used
#include "olb3D.hh" // Include full template code
#endif
#include <iostream>
#include <fstream>
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace olb::util;
using namespace std;
typedef double T;
#define DESCRIPTOR D3Q19<>
T maxPhysT = 200.0; // max. simulation time in s, SI unit
SuperGeometry3D<T> prepareGeometry( ) {
OstreamManager clout( std::cout,"prepareGeometry" );
clout << "Prepare Geometry ..." << std::endl;
std::string fName("venturi3d.xml");
XMLreader config(fName);
std::shared_ptr<IndicatorF3D<T> > inflow = createIndicatorCylinder3D<T>(config["Geometry"]["Inflow"]["IndicatorCylinder3D"], false);
std::shared_ptr<IndicatorF3D<T> > outflow0 = createIndicatorCylinder3D<T>(config["Geometry"]["Outflow0"]["IndicatorCylinder3D"], false);
std::shared_ptr<IndicatorF3D<T> > outflow1 = createIndicatorCylinder3D<T>(config["Geometry"]["Outflow1"]["IndicatorCylinder3D"], false);
std::shared_ptr<IndicatorF3D<T> > venturi = createIndicatorF3D<T>(config["Geometry"]["Venturi"], false);
// Build CoboidGeometry from IndicatorF (weights are set, remove and shrink is done)
int N = config["Application"]["Discretization"]["Resolution"].get<int>();
CuboidGeometry3D<T>* cuboidGeometry = new CuboidGeometry3D<T>( *venturi, 1./N, 20*singleton::mpi().getSize() );
// Build LoadBalancer from CuboidGeometry (weights are respected)
HeuristicLoadBalancer<T>* loadBalancer = new HeuristicLoadBalancer<T>( *cuboidGeometry );
// Default instantiation of superGeometry
SuperGeometry3D<T> superGeometry( *cuboidGeometry, *loadBalancer, 2 );
// Set boundary voxels by rename material numbers
superGeometry.rename( 0,2, venturi );
superGeometry.rename( 2,1,1,1,1 );
superGeometry.rename( 2,3,1, inflow );
superGeometry.rename( 2,4,1, outflow0 );
superGeometry.rename( 2,5,1, outflow1 );
// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.getStatistics().print();
superGeometry.communicate();
clout << "Prepare Geometry ... OK" << std::endl;
return superGeometry;
}
void prepareLattice( SuperLattice3D<T,DESCRIPTOR>& sLattice,
UnitConverter<T, DESCRIPTOR> const& converter,
Dynamics<T, DESCRIPTOR>& bulkDynamics,
sOnLatticeBoundaryCondition3D<T,DESCRIPTOR>& bc,
sOffLatticeBoundaryCondition3D<T,DESCRIPTOR>& offBc,
SuperGeometry3D<T>& superGeometry ) {
OstreamManager clout( std::cout,"prepareLattice" );
clout << "Prepare Lattice ..." << std::endl;
const T omega = converter.getLatticeRelaxationFrequency();
// Material=0 -->do nothing
sLattice.defineDynamics( superGeometry, 0, &instances::getNoDynamics<T, DESCRIPTOR>() );
// Material=1 -->bulk dynamics
sLattice.defineDynamics( superGeometry, 1, &bulkDynamics );
// Material=2 -->bounce back
sLattice.defineDynamics( superGeometry, 2, &instances::getBounceBack<T, DESCRIPTOR>() );
// Material=3 -->bulk dynamics (inflow)
sLattice.defineDynamics( superGeometry, 3, &bulkDynamics );
// Material=4 -->bulk dynamics (outflow)
sLattice.defineDynamics( superGeometry, 4, &bulkDynamics );
// Material=5 -->bulk dynamics (2nd outflow)
sLattice.defineDynamics( superGeometry, 5, &bulkDynamics );
// Setting of the boundary conditions
bc.addVelocityBoundary( superGeometry, 3, omega );
bc.addPressureBoundary( superGeometry, 4, omega );
bc.addPressureBoundary( superGeometry, 5, omega );
clout << "Prepare Lattice ... OK" << std::endl;
}
// Generates a slowly increasing sinuidal inflow for the first iTMax timesteps
void setBoundaryValues( SuperLattice3D<T, DESCRIPTOR>& sLattice,
UnitConverter<T, DESCRIPTOR> const& converter, int iT,
SuperGeometry3D<T>& superGeometry ) {
OstreamManager clout( std::cout,"setBoundaryValues" );
// No of time steps for smooth start-up
int iTmaxStart = converter.getLatticeTime( maxPhysT*0.8 );
int iTperiod = 50;
if ( iT==0 ) {
// Make the lattice ready for simulation
sLattice.initialize();
}
else if ( iT%iTperiod==0 && iT<= iTmaxStart ) {
//clout << "Set Boundary Values ..." << std::endl;
//SinusStartScale<T,int> startScale(iTmaxStart, (T) 1);
PolynomialStartScale<T,int> startScale( iTmaxStart, T( 1 ) );
int iTvec[1]= {iT};
T frac = T();
startScale( &frac,iTvec );
// Creates and sets the Poiseuille inflow profile using functors
CirclePoiseuille3D<T> poiseuilleU( superGeometry, 3, frac*converter.getCharLatticeVelocity(), converter.getConversionFactorLength() );
sLattice.defineU( superGeometry, 3, poiseuilleU );
//clout << "step=" << iT << "; scalingFactor=" << frac << std::endl;
}
//clout << "Set Boundary Values ... ok" << std::endl;
}
void getResults( SuperLattice3D<T, DESCRIPTOR>& sLattice,
UnitConverter<T, DESCRIPTOR>& converter, int iT,
SuperGeometry3D<T>& superGeometry, Timer<T>& timer ) {
OstreamManager clout( std::cout,"getResults" );
SuperVTMwriter3D<T> vtmWriter( "venturi3d" );
if ( iT==0 ) {
// Writes the geometry, cuboid no. and rank no. as vti file for visualization
SuperLatticeGeometry3D<T, DESCRIPTOR> geometry( sLattice, superGeometry );
SuperLatticeCuboid3D<T, DESCRIPTOR> cuboid( sLattice );
SuperLatticeRank3D<T, DESCRIPTOR> rank( sLattice );
vtmWriter.write( geometry );
vtmWriter.write( cuboid );
vtmWriter.write( rank );
vtmWriter.createMasterFile();
}
// Writes the vtm files
if ( iT%converter.getLatticeTime( 1. )==0 ) {
// Create the data-reading functors...
SuperLatticePhysVelocity3D<T, DESCRIPTOR> velocity( sLattice, converter );
SuperLatticePhysPressure3D<T, DESCRIPTOR> pressure( sLattice, converter );
vtmWriter.addFunctor( velocity );
vtmWriter.addFunctor( pressure );
vtmWriter.write( iT );
SuperEuklidNorm3D<T, DESCRIPTOR> normVel( velocity );
BlockReduction3D2D<T> planeReduction( normVel, {0, 0, 1} );
// write output as JPEG
heatmap::write(planeReduction, iT);
// write output as JPEG and changing properties
heatmap::plotParam<T> jpeg_Param;
jpeg_Param.name = "outflow";
jpeg_Param.contourlevel = 5;
jpeg_Param.colour = "blackbody";
jpeg_Param.zoomOrigin = {0.6, 0.3};
jpeg_Param.zoomExtend = {0.4, 0.7};
heatmap::write(planeReduction, iT, jpeg_Param);
}
// Writes output on the console
if ( iT%converter.getLatticeTime( 1. )==0 ) {
timer.update( iT );
timer.printStep();
sLattice.getStatistics().print( iT, converter.getPhysTime( iT ) );
}
}
int main( int argc, char* argv[] ) {
// === 1st Step: Initialization ===
olbInit( &argc, &argv );
singleton::directories().setOutputDir( "./tmp/" );
OstreamManager clout( std::cout,"main" );
// display messages from every single mpi process
// clout.setMultiOutput(true);
std::string fName("venturi3d.xml");
XMLreader config(fName);
UnitConverter<T, DESCRIPTOR>* converter = createUnitConverter<T, DESCRIPTOR>(config);
// Prints the converter log as console output
converter->print();
// Writes the converter log in a file
converter->write("venturi3d");
// === 2nd Step: Prepare Geometry ===
SuperGeometry3D<T> superGeometry( prepareGeometry() );
// === 3rd Step: Prepare Lattice ===
|