1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2006, 2007 Orestis Malaspinas, Jonas Latt
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef INAMURO_NEWTON_RAPHSON_DYNAMICS_H
#define INAMURO_NEWTON_RAPHSON_DYNAMICS_H
#include "dynamics/dynamics.h"
#include "io/ostreamManager.h"
namespace olb {
/**
* This class computes the inamuro BC with general dynamics. It uses the formula from the
* paper by Inamuro et al. but since there is no explict solution
* for a lattice different from the D2Q9 and for a speed of sound
* c_s=q/sqrt(3), we have to use a Newton-Raphson algorithm to
* implement these boundary conditions.
*/
template<typename T, typename DESCRIPTOR, typename Dynamics, int direction, int orientation>
class InamuroNewtonRaphsonDynamics : public BasicDynamics<T,DESCRIPTOR> {
public:
/// Constructor
InamuroNewtonRaphsonDynamics(T omega, Momenta<T,DESCRIPTOR>& momenta);
/// Compute equilibrium distribution function
T computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const override;
/// Collision step
void collide(Cell<T,DESCRIPTOR>& cell,
LatticeStatistics<T>& statistics) override;
/// Get local relaxation parameter of the dynamics
T getOmega() const override;
/// Set local relaxation parameter of the dynamics
void setOmega(T omega) override;
private:
void computeApproxMomentum(T approxMomentum[DESCRIPTOR::d],
const Cell<T,DESCRIPTOR> &cell,
const T &rho, const T u[DESCRIPTOR::d], const T xi[DESCRIPTOR::d],
const std::vector<int> knownIndexes,const std::vector<int> missingIndexes);
/// compute the error (L^2 norm of (u-uApprox))
T computeError(const T &rho,const T u[DESCRIPTOR::d], const T approxMomentum[DESCRIPTOR::d]);
void computeGradGradError(T gradGradError[DESCRIPTOR::d][DESCRIPTOR::d],
T gradError[DESCRIPTOR::d],
const T &rho, const T u[DESCRIPTOR::d],const T xi[DESCRIPTOR::d],
const T approxMomentum[DESCRIPTOR::d],
const std::vector<int> missingIndexes);
/// compute the new xi with the newton raphson algorithm
bool newtonRaphson(T xi[DESCRIPTOR::d],
const T gradError[DESCRIPTOR::d],
const T gradGradError[DESCRIPTOR::d][DESCRIPTOR::d]);
bool invert(const T a[2][2],T b[2][2]);
bool invert(const T a[3][3],T b[3][3]);
Dynamics _boundaryDynamics;
T _xi[DESCRIPTOR::d];
mutable OstreamManager clout;
};
}
#endif
|