1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2007 Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* A helper for initialising 3D boundaries -- header file.
*/
#ifndef SUPER_BOUNDARY_CONDITION_3D_H
#define SUPER_BOUNDARY_CONDITION_3D_H
#include <vector>
#include "io/ostreamManager.h"
#include "utilities/functorPtr.h"
#include "extendedFiniteDifferenceBoundary3D.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
template<typename T, typename DESCRIPTOR> class OnLatticeAdvectionDiffusionBoundaryCondition3D;
template<typename T, typename DESCRIPTOR> class OnLatticeBoundaryCondition3D;
template<typename T, typename DESCRIPTOR> class SuperLattice3D;
template<typename T> class SuperGeometry3D;
template<typename T> class SuperIndicatorF3D;
/// A helper for initialising 3D boundaries for super lattices.
/** Here we have methods that initializes the local postprocessors and the
* communicator (_commBC in SuperLattice) for boundary conditions
* for a given global point or global range.
*
* This class is not intended to be derived from.
*/
template<typename T, typename DESCRIPTOR>
class sOnLatticeBoundaryCondition3D {
public:
sOnLatticeBoundaryCondition3D(SuperLattice3D<T, DESCRIPTOR>& sLattice);
sOnLatticeBoundaryCondition3D(sOnLatticeBoundaryCondition3D<T, DESCRIPTOR> const& rhs);
sOnLatticeBoundaryCondition3D operator=(sOnLatticeBoundaryCondition3D<T,DESCRIPTOR> rhs);
~sOnLatticeBoundaryCondition3D();
void addVelocityBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator, T omega);
void addVelocityBoundary(SuperGeometry3D<T>& superGeometry, int material, T omega);
void addSlipBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator);
void addSlipBoundary(SuperGeometry3D<T>& superGeometry, int material);
void addPartialSlipBoundary(T tuner, FunctorPtr<SuperIndicatorF3D<T>>&& indicator);
void addPartialSlipBoundary(T tuner, SuperGeometry3D<T>& superGeometry, int material);
void addPressureBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator, T omega);
void addPressureBoundary(SuperGeometry3D<T>& superGeometry, int material, T omega);
void addConvectionBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator,
T omega, T* uAv=NULL);
void addConvectionBoundary(SuperGeometry3D<T>& superGeometry, int material,
T omega, T* uAv=NULL);
void addConvectionBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator);
void addConvectionBoundary(SuperGeometry3D<T>& superGeometry, int material);
void addWallFunctionBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator,
UnitConverter<T, DESCRIPTOR> const& converter,
wallFunctionParam<T> const& wallFunctionParam,
IndicatorF3D<T>* geoIndicator=NULL);
void addWallFunctionBoundary(SuperGeometry3D<T>& superGeometry, int material,
UnitConverter<T, DESCRIPTOR> const& converter,
wallFunctionParam<T> const& wallFunctionParam,
IndicatorF3D<T>* geoIndicator=NULL);
void addTemperatureBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator, T omega);
void addTemperatureBoundary(SuperGeometry3D<T>& superGeometry, int material, T omega);
void addExtFieldBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator, int offset);
void addExtFieldBoundary(SuperGeometry3D<T>& superGeometry, int material, int offset);
void addZeroDistributionBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator);
void addZeroDistributionBoundary(SuperGeometry3D<T>& superGeometry, int material);
/// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator,
T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber);
/// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(SuperGeometry3D<T>& superGeometry, int material,
T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber);
/// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa3_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator,
T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber);
/// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa3_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(SuperGeometry3D<T>& superGeometry, int material,
T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber);
/// Implementation of a inlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyInletBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator, T omega, std::string type, int latticeNumber);
/// Implementation of a inlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyInletBoundary(SuperGeometry3D<T>& superGeometry, int material, T omega, std::string type, int latticeNumber);
/// Implementation of a outlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyOutletBoundary(FunctorPtr<SuperIndicatorF3D<T>>&& indicator, T omega, std::string type, int latticeNumber);
/// Implementation of a outlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyOutletBoundary(SuperGeometry3D<T>& superGeometry, int material, T omega, std::string type, int latticeNumber);
/// Adds needed Cells to the Communicator _commBC in SuperLattice
void addPoints2CommBC(FunctorPtr<SuperIndicatorF3D<T>>&& indicator);
/// Adds needed Cells to the Communicator _commBC in SuperLattice
void addPoints2CommBC(SuperGeometry3D<T>& superGeometry, int material);
SuperLattice3D<T, DESCRIPTOR>& getSuperLattice();
std::vector<OnLatticeBoundaryCondition3D<T, DESCRIPTOR>*>& getBlockBCs();
std::vector<OnLatticeAdvectionDiffusionBoundaryCondition3D<T, DESCRIPTOR>*>& getADblockBCs();
int getOverlap();
void setOverlap(int overlap);
void outputOn();
void outputOff();
private:
mutable OstreamManager clout;
SuperLattice3D<T, DESCRIPTOR>& _sLattice;
std::vector<OnLatticeBoundaryCondition3D<T, DESCRIPTOR>*> _blockBCs;
std::vector<OnLatticeAdvectionDiffusionBoundaryCondition3D<T, DESCRIPTOR>*> _ADblockBCs;
int _overlap;
bool _output;
};
////////////////// Factory functions //////////////////////////////////
template<typename T, typename DESCRIPTOR>
void createLocalBoundaryCondition3D(sOnLatticeBoundaryCondition3D<T, DESCRIPTOR>& sBC);
template<typename T, typename DESCRIPTOR, typename MixinDynamics=BGKdynamics<T,DESCRIPTOR> >
void createInterpBoundaryCondition3D(sOnLatticeBoundaryCondition3D<T, DESCRIPTOR>& sBC);
template<typename T, typename DESCRIPTOR, typename MixinDynamics=BGKdynamics<T,DESCRIPTOR> >
void createExtFdBoundaryCondition3D(sOnLatticeBoundaryCondition3D<T, DESCRIPTOR>& sBC);
} // namespace olb
#endif
|