summaryrefslogtreecommitdiff
path: root/src/boundary/zouHeDynamics.hh
blob: cf3af1583c813b200e2846e541d079e120edb893 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*  This file is part of the OpenLB library
 *
 *  Copyright (C) 2006,2007 Orestis Malaspinas and Jonas Latt
 *  E-mail contact: info@openlb.net
 *  The most recent release of OpenLB can be downloaded at
 *  <http://www.openlb.net/>
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public
 *  License along with this program; if not, write to the Free
 *  Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA  02110-1301, USA.
*/

#ifndef ZOU_HE_DYNAMICS_HH
#define ZOU_HE_DYNAMICS_HH

#include "zouHeDynamics.h"
#include "dynamics/latticeDescriptors.h"
#include "core/util.h"
#include "dynamics/lbHelpers.h"
#include <cmath>


namespace olb {

 

template<typename T, typename DESCRIPTOR, typename Dynamics, int direction, int orientation>
ZouHeDynamics<T,DESCRIPTOR,Dynamics,direction,orientation>::ZouHeDynamics (
  T omega_, Momenta<T,DESCRIPTOR>& momenta_ )
  : BasicDynamics<T,DESCRIPTOR>(momenta_),
    boundaryDynamics(omega_, momenta_)
{ }

template<typename T, typename DESCRIPTOR, typename Dynamics, int direction, int orientation>
T ZouHeDynamics<T,DESCRIPTOR, Dynamics, direction, orientation>::
computeEquilibrium(int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const
{
  return boundaryDynamics.computeEquilibrium(iPop, rho, u, uSqr);
}

template<typename T, typename DESCRIPTOR, typename Dynamics, int direction, int orientation>
void ZouHeDynamics<T,DESCRIPTOR,Dynamics,direction,orientation>::collide (
  Cell<T,DESCRIPTOR>& cell,
  LatticeStatistics<T>& statistics )
{
  typedef lbHelpers<T,DESCRIPTOR> lbH;
  typedef DESCRIPTOR L;

  // Along all the commented parts of this code there will be an example based
  // on the situation where the wall's normal vector if (0,1) and the
  // numerotation of the velocites are done according to the D2Q9
  // lattice of the OpenLB library.

  // Find all the missing populations
  // (directions 3,4,5)
  std::vector<int> missingIndexes = util::subIndexOutgoing<L,direction,orientation>();

  // Will contain the missing poputations that are not normal to the wall.
  // (directions 3,5)
  std::vector<int> missingDiagonalIndexes = missingIndexes;
  for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop) {
    int numOfNonNullComp = 0;
    for (int iDim = 0; iDim < L::d; ++iDim) {
      numOfNonNullComp += abs(descriptors::c<L>(missingIndexes[iPop],iDim));
    }

    if (numOfNonNullComp == 1) {
      missingDiagonalIndexes.erase(missingDiagonalIndexes.begin()+iPop);
      break;
    }
  }

  T rho, u[L::d];
  T falseRho, falseU[L::d];
  this->_momenta.computeRhoU(cell, rho, u);

  T uSqr = util::normSqr<T,L::d>(u);

  // The unknown non equilibrium populations are bounced back
  // (f[3] = feq[3] + fneq[7], f[4] = feq[4] + fneq[8],
  //  f[5] = feq[5] + fneq[1])
  for (unsigned iPop = 0; iPop < missingIndexes.size(); ++iPop) {
    cell[missingIndexes[iPop]] = cell[util::opposite<L>(missingIndexes[iPop])]
                                 - computeEquilibrium(util::opposite<L>(missingIndexes[iPop]), rho, u, uSqr)
                                 + computeEquilibrium(missingIndexes[iPop], rho, u, uSqr);
  }

  // We recompute rho and u in order to have the new momentum and density. Since
  // the momentum is not conserved from this scheme, we will corect it. By adding
  // a contribution to the missingDiagonalVelocities.
  lbH::computeRhoU(cell,falseRho,falseU);

  T diff[L::d];
  for (int iDim = 0; iDim < L::d; ++iDim) {
    diff[iDim] = (rho*u[iDim] - falseRho*falseU[iDim])/ (T)missingDiagonalIndexes.size();
  }

  for (unsigned iPop = 0; iPop < missingDiagonalIndexes.size(); ++iPop) {
    for (int iDim = 1; iDim < L::d; ++iDim) {
      cell[missingDiagonalIndexes[iPop]] +=
        descriptors::c<L>(missingDiagonalIndexes[iPop],(direction+iDim)%L::d) * diff[(direction+iDim)%L::d];
    }
  }

  boundaryDynamics.collide(cell, statistics);

  statistics.incrementStats(rho, uSqr);
}

template<typename T, typename DESCRIPTOR, typename Dynamics, int direction, int orientation>
T ZouHeDynamics<T,DESCRIPTOR,Dynamics,direction,orientation>::getOmega() const
{
  return boundaryDynamics.getOmega();
}

template<typename T, typename DESCRIPTOR, typename Dynamics, int direction, int orientation>
void ZouHeDynamics<T,DESCRIPTOR,Dynamics,direction,orientation>::setOmega(T omega_)
{
  boundaryDynamics.setOmega(omega_);
}


}  // namespace olb

#endif