1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2017-2018 Max Gaedtke, Albert Mink, Davide Dapelo
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* Unit conversion handling -- header file.
*/
#ifndef PL_UNITCONVERTER_H
#define PL_UNITCONVERTER_H
#include <math.h>
#include "io/ostreamManager.h"
#include "core/util.h"
#include "io/xmlReader.h"
#include "unitConverter.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
/** Conversion between physical and lattice units, as well as discretization specialized for power-law rheology: \f$\nu=m^{n-1}\f$, with \f$m$ being the consistency coefficient and \f$n\f$ the power-law index.
* The Newtonian case is recovered for \f$n=1\f$.
* A characteristic (apparent) kinematic viscosity for problem similarity (e.g., to compute the Reynolds number) is obtained as __physViscosity = poweLawConsistencyCoeff * [physVelocity / (2*physLength)]^(n-1)__.
* Be aware of the nomenclature:
* We distingish between physical (dimensioned) and lattice (dimensionless) values.
* A specific conversion factor maps the two different scopes,
* e.g. __physLength = conversionLength * latticeLength__
*
* For pressure and temperature we first shift the physical values by a characteristic value to asure a lattice pressure and lattice temperature between 0 and 1, e.g. __physPressure - charPhysPressure = conversionPressure * latticePressure__
*
* \param latticeRelaxationTime relaxation time, have to be greater than 0.5!
* - - -
* \param physViscosity physical kinematic viscosity in __m^2 / s__
* \param poweLawIndex power-law index
* \param physConsistencyCoeff physicsl consistency coefficient __m^2 s^(n-2)__
* \param physDensity physical density in __kg / m^3__
* - - -
* \param conversionLength conversion factor for length __m__
* \param conversionTime conversion factor for time __s__
* \param conversionMass conversion factor for mass __kg__
* - - -
* \param conversionVelocity conversion velocity __m / s__
* \param conversionViscosity conversion kinematic viscosity __m^2 / s__
* \param conversionConsistencyCoeff conversion power-law consistency coefficient __m^2 s^(n-2)__
* \param conversionDensity conversion density __kg / m^3__
* \param conversionForce conversion force __kg m / s^2__
* \param conversionPressure conversion pressure __kg / m s^2__
* - - -
* \param resolution number of grid points per charPhysLength
* - - -
* \param charLatticeVelocity
*/
template <typename T, typename DESCRIPTOR>
class PowerLawUnitConverter : public UnitConverter<T, DESCRIPTOR> {
public:
/** Documentation of constructor:
* \param physDeltaX spacing between two lattice cells in __m__
* \param physDeltaT time step in __s__
* \param charPhysLength reference/characteristic length of simulation geometry in __m__
* \param charPhysVelocity maximal or highest expected velocity during simulation in __m / s__
* \param physConsistencyCoeff physical power-law consistency coefficient in __m^2 s^(n-2)__
* \param powerLawIndex Power-law index
* \param physDensity physical density in __kg / m^3__
* \param charPhysPressure reference/characteristic physical pressure in Pa = kg / m s^2
*/
constexpr PowerLawUnitConverter( T physDeltaX, T physDeltaT, T charPhysLength,
T charPhysVelocity, T physConsistencyCoeff, T powerLawIndex,
T physDensity, T charPhysPressure = 0 )
: UnitConverter<T, DESCRIPTOR>( physDeltaX, physDeltaT, charPhysLength, charPhysVelocity,
physConsistencyCoeff * pow(charPhysVelocity / (2*charPhysLength), powerLawIndex-1),
physDensity, charPhysPressure ),
_conversionConsistencyCoeff(pow( physDeltaT,powerLawIndex-2 ) * pow( physDeltaX,2 ) ),
_powerLawIndex(powerLawIndex),
_physConsistencyCoeff(physConsistencyCoeff),
clout(std::cout,"PowerLawUnitConverter")
{
}
/// return consistency coefficient in physical units
constexpr T getPhysConsistencyCoeff( ) const
{
return _physConsistencyCoeff;
}
/// conversion from lattice to physical consistency coefficient
constexpr T getPhysConsistencyCoeff( T latticeConsistencyCoeff ) const
{
return _conversionConsistencyCoeff * latticeConsistencyCoeff;
}
/// conversion from physical to lattice consistency coefficient
constexpr T getLatticeConsistencyCoeff( ) const
{
return _physConsistencyCoeff / _conversionConsistencyCoeff;
}
/// access (read-only) to private member variable
constexpr T getConversionFactorConsistencyCoeff() const
{
return _conversionConsistencyCoeff;
}
/// access (read-only) to private member variable
constexpr T getPowerLawIndex() const
{
return _powerLawIndex;
}
/// nice terminal output for conversion factors, characteristical and physical data
virtual void print() const;
void write(std::string const& fileName = "unitConverter") const;
protected:
// conversion factors
const T _conversionConsistencyCoeff; // m^2 s^(n-2)
// physical units, e.g characteristic or reference values
const T _powerLawIndex;
const T _physConsistencyCoeff; // m^2 s^(n-2)
private:
mutable OstreamManager clout;
};
/// creator function with data given by a XML file
template <typename T, typename DESCRIPTOR>
PowerLawUnitConverter<T, DESCRIPTOR>* createPowerLawUnitConverter(XMLreader const& params);
template <typename T, typename DESCRIPTOR>
class PowerLawUnitConverterFrom_Resolution_RelaxationTime_Reynolds_PLindex : public PowerLawUnitConverter<T, DESCRIPTOR> {
public:
constexpr PowerLawUnitConverterFrom_Resolution_RelaxationTime_Reynolds_PLindex(
int resolution,
T latticeRelaxationTime,
T charPhysLength,
T charPhysVelocity,
T Re,
T powerLawIndex,
T physDensity,
T charPhysPressure = 0)
: PowerLawUnitConverter<T, DESCRIPTOR>( (charPhysLength/resolution),
(latticeRelaxationTime - 0.5) / descriptors::invCs2<T,DESCRIPTOR>() * pow((charPhysLength/resolution),2) / ( ( charPhysLength * charPhysVelocity * pow( charPhysVelocity / ( 2 * charPhysLength ), 1 - powerLawIndex ) / Re ) * pow( charPhysVelocity / (2 * charPhysLength ), powerLawIndex - 1 ) ),
charPhysLength, charPhysVelocity,
charPhysLength * charPhysVelocity * pow( charPhysVelocity / ( 2 * charPhysLength ), 1 - powerLawIndex ) / Re, powerLawIndex, physDensity, charPhysPressure )
{
}
};
} // namespace olb
#endif
|