1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2016 Robin Trunk
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef ADVECTION_DIFFUSION_FORCES_HH
#define ADVECTION_DIFFUSION_FORCES_HH
#include "advectionDiffusionForces.h"
namespace olb {
template<typename T, typename DESCRIPTOR,
typename ADLattice>
AdvDiffDragForce3D<T,DESCRIPTOR,ADLattice>::AdvDiffDragForce3D(UnitConverter<T,DESCRIPTOR> const& converter_, T St_)
{
initArg = 8;
dragCoeff = (converter_.getCharPhysVelocity()*converter_.getConversionFactorTime()) / (St_ * converter_.getCharPhysLength());
}
template<typename T, typename DESCRIPTOR,
typename ADLattice>
AdvDiffDragForce3D<T,DESCRIPTOR,ADLattice>::AdvDiffDragForce3D(UnitConverter<T,DESCRIPTOR> const& converter_, T pRadius_, T pRho_)
{
initArg = 8;
dragCoeff = (9.*converter_.getPhysViscosity()*converter_.getPhysDensity()*converter_.getConversionFactorTime()) / (2.*pRho_*pRadius_*pRadius_);
}
template<typename T, typename DESCRIPTOR,
typename ADLattice>
void AdvDiffDragForce3D<T,DESCRIPTOR,ADLattice>::applyForce(T force[], Cell<T,DESCRIPTOR> *nsCell, Cell<T,ADLattice> *adCell, T vel[], int latticeR[])
{
T velF[3] = {0.,0.,0.};
nsCell->computeU(velF);
for (int i=0; i < DESCRIPTOR::d; i++) {
force[i] += dragCoeff*(velF[i]-vel[i]);
}
}
template<typename T, typename DESCRIPTOR,
typename ADLattice>
AdvDiffRotatingForce3D<T,DESCRIPTOR,ADLattice>::AdvDiffRotatingForce3D(SuperGeometry3D<T>& superGeometry_,
const UnitConverter<T,DESCRIPTOR>& converter_, std::vector<T> axisPoint_, std::vector<T> axisDirection_,
T w_, T* frac_, bool centrifugeForceOn_, bool coriolisForceOn_) :
sg(superGeometry_), axisPoint(axisPoint_), axisDirection(axisDirection_),
w(w_), frac(frac_), centrifugeForceOn(centrifugeForceOn_), coriolisForceOn(coriolisForceOn_)
{
invMassLessForce = converter_.getConversionFactorTime() * converter_.getConversionFactorTime() / converter_.getConversionFactorLength();
}
template<typename T, typename DESCRIPTOR,
typename ADLattice>
void AdvDiffRotatingForce3D<T,DESCRIPTOR,ADLattice>::applyForce(T force[], Cell<T,DESCRIPTOR> *nsCell, Cell<T,ADLattice> *adCell, T vel[], int latticeR[])
{
std::vector<T> F_centri(3,0);
std::vector<T> F_coriolis(3,0);
T wf = w*(*frac);
// if ( this->_sLattice.getLoadBalancer().rank(latticeR[0]) == singleton::mpi().getRank() ) {
// local coords are given, fetch local cell and compute value(s)
std::vector<T> physR(3,T());
this->sg.getCuboidGeometry().getPhysR(&(physR[0]),&(latticeR[0]));
T scalar = (physR[0]-axisPoint[0])*axisDirection[0]
+(physR[1]-axisPoint[1])*axisDirection[1]
+(physR[2]-axisPoint[2])*axisDirection[2];
if (centrifugeForceOn) {
F_centri[0] = wf*wf*(physR[0]-axisPoint[0]-scalar*axisDirection[0]);
F_centri[1] = wf*wf*(physR[1]-axisPoint[1]-scalar*axisDirection[1]);
F_centri[2] = wf*wf*(physR[2]-axisPoint[2]-scalar*axisDirection[2]);
}
if (coriolisForceOn) {
F_coriolis[0] = -2*wf*(axisDirection[1]*vel[2]-axisDirection[2]*vel[1]);
F_coriolis[1] = -2*wf*(axisDirection[2]*vel[0]-axisDirection[0]*vel[2]);
F_coriolis[2] = -2*wf*(axisDirection[0]*vel[1]-axisDirection[1]*vel[0]);
}
force[0] += (F_coriolis[0]+F_centri[0])*invMassLessForce;
force[1] += (F_coriolis[1]+F_centri[1])*invMassLessForce;
force[2] += (F_coriolis[2]+F_centri[2])*invMassLessForce;
// }
}
template<typename T, typename DESCRIPTOR,
typename ADLattice>
AdvDiffMagneticWireForce3D<T,DESCRIPTOR,ADLattice>::AdvDiffMagneticWireForce3D(SuperGeometry3D<T>& superGeometry_, UnitConverter<T,DESCRIPTOR> const& converter_, T pMass, AnalyticalF3D<T, T>& getMagForce) : sg(superGeometry_), _getMagForce(getMagForce)
{
initArg = 8;
_pMass = converter_.getConversionFactorTime() / pMass;
_conversionVelocity = converter_.getConversionFactorVelocity();
}
template<typename T, typename DESCRIPTOR,
typename ADLattice>
void AdvDiffMagneticWireForce3D<T,DESCRIPTOR,ADLattice>::applyForce(T force[], Cell<T,DESCRIPTOR> *nsCell, Cell<T,ADLattice> *adCell, T vel[], int latticeR[])
{
std::vector<T> physR(3,T());
this->sg.getCuboidGeometry().getPhysR(&(physR[0]),&(latticeR[0]));
T pos[3] = { T(), T(), T() };
pos[0] = physR[0];
pos[1] = physR[1];
pos[2] = physR[2];
T forceHelp[3] = { T(), T(), T() };
_getMagForce(forceHelp, pos);
for (int i=0; i < DESCRIPTOR::d; i++) {
force[i] += forceHelp[i] * _pMass / _conversionVelocity;
// std::cout << "----->>>>> force " << forceHelp[i] << std::endl;
}
}
}
#endif
|