1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2006, 2007 Jonas Latt
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* Specialized helper functions for advanced techniques around LB
* implementations. They implement the physics of the first-order terms
* of the Chapman-Enskog expansion and are useful whenever a transition
* from hydrodynamical variables (rho, u) to kinetic variables (f) si to
* be implemented. Additionally, they are used for the implementation of
* the stable RLB dynamics.
*
* This file is all about efficiency. The generic
* template code is specialized for commonly used Lattices, so that a
* maximum performance can be taken out of each case.
*/
#ifndef FIRST_ORDER_LB_HELPERS_H
#define FIRST_ORDER_LB_HELPERS_H
#include "latticeDescriptors.h"
#include "core/cell.h"
#include "core/util.h"
#include "lbHelpers.h"
namespace olb {
/// General first-order functions
template<typename T, typename DESCRIPTOR>
struct firstOrderLbHelpers {
/// Compute off-equilibrium part of the f's from the stress tensor Pi.
/** Implements the following formula (with Einstein index contraction):
* \f[ f_i^{neq} = t_i / (2 c_s^4) *
* (c_{ia} c_{ib} - c_s^2 \delta_{ab}) \Pi_{ab} \f]
* By Pi we mean the tensor computed from the off-equilibrium functions:
* \f[ \Pi = \sum c_i c_i f_i^{neq}
* = \sum c_i c_i f_i - \rho u u - c_s^2 \rho\ Id \f]
*/
static T fromPiToFneq (
int iPop, const T pi[util::TensorVal<DESCRIPTOR >::n] )
{
typedef DESCRIPTOR L;
T fNeq = T();
int iPi = 0;
// Iterate only over superior triangle + diagonal, and add
// the elements under the diagonal by symmetry
for (int iAlpha=0; iAlpha<L::d; ++iAlpha) {
for (int iBeta=iAlpha; iBeta<L::d; ++iBeta) {
T toAdd = descriptors::c<L>(iPop,iAlpha)*descriptors::c<L>(iPop,iBeta);
if (iAlpha==iBeta) {
toAdd -= 1./descriptors::invCs2<T,L>();
} else {
toAdd *= (T)2; // multiply off-diagonal elements by 2
} // because the Q tensor is symmetric
toAdd *= pi[iPi++];
fNeq += toAdd;
}
}
fNeq *= descriptors::t<T,L>(iPop) * descriptors::invCs2<T,L>() * descriptors::invCs2<T,L>() / (T)2;
return fNeq;
}
static T fromJneqToFneq ( int iPop, const T jNeq[DESCRIPTOR::d] )
{
T fNeq = T();
for ( int iD = 0; iD < DESCRIPTOR::d; ++iD ) {
fNeq += descriptors::c<DESCRIPTOR>(iPop,iD) * jNeq[iD];
}
fNeq *= descriptors::t<T,DESCRIPTOR>(iPop) * descriptors::invCs2<T,DESCRIPTOR>();
return fNeq;
}
}; // struct firstOrderLbHelpers
/// Specific helper functions for RLB dynamics
template<typename T, typename DESCRIPTOR>
struct rlbHelpers {
/// Renormalized DESCRIPTOR Boltzmann collision operator, fIn --> fOut
static T rlbCollision (
Cell<T,DESCRIPTOR>& cell, T rho, const T u[DESCRIPTOR::d],
const T pi[util::TensorVal<DESCRIPTOR >::n], T omega )
{
typedef DESCRIPTOR L;
const T uSqr = util::normSqr<T,L::d>(u);
cell[0] = lbHelpers<T,DESCRIPTOR>::equilibrium(0, rho, u, uSqr)
+ ((T)1-omega) *
firstOrderLbHelpers<T,DESCRIPTOR>::fromPiToFneq(0, pi);
for (int iPop=1; iPop<=L::q/2; ++iPop) {
cell[iPop] =
lbHelpers<T,DESCRIPTOR>::equilibrium(iPop, rho, u, uSqr);
cell[iPop+L::q/2] =
lbHelpers<T,DESCRIPTOR>::equilibrium(iPop+L::q/2, rho, u, uSqr);
T fNeq = ((T)1-omega) *
firstOrderLbHelpers<T,DESCRIPTOR>::fromPiToFneq(iPop, pi);
cell[iPop] += fNeq;
cell[iPop+L::q/2] += fNeq;
}
return uSqr;
}
}; // struct rlbHelpers
} // namespace olb
// The specialized code is directly included. That is because we never want
// it to be precompiled so that in both the precompiled and the
// "include-everything" version, the compiler can apply all the
// optimizations it wants.
#include "firstOrderLbHelpers2D.h"
#include "firstOrderLbHelpers3D.h"
#endif
|