summaryrefslogtreecommitdiff
path: root/src/dynamics/stochasticSGSdynamics.hh
blob: b61958ff85ad27077b179968be3895d24a2512f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*  This file is part of the OpenLB library
 *
 *  Copyright (C) 2013 Mathias J. Krause, Jonas Latt
 *  E-mail contact: info@openlb.net
 *  The most recent release of OpenLB can be downloaded at
 *  <http://www.openlb.net/>
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public
 *  License along with this program; if not, write to the Free
 *  Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA  02110-1301, USA.
*/

/** \file
 * MRT Dynamics with adjusted omega -- generic implementation.
 */
#ifndef STOCHASTIC_SGS_DYNAMICS_HH
#define STOCHASTIC_SGS_DYNAMICS_HH

#include <algorithm>
#include <limits>
#include "stochasticSGSdynamics.h"
#include "mrtDynamics.h"
#include "mrtHelpers.h"
#include "core/cell.h"
#include "core/util.h"
#include "math.h"

#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <stdio.h>


using namespace std;
namespace olb {

/// Implementation of the Stochastic relaxation based on
/// " A stochastic subgrid model with application to turbulent flow and scalar mixing"; Phys. of Fluids 19; 2007

////////////////////// Class StochasticsSGSdynamics //////////////////////////

/** \param vs2_ speed of sound
 *  \param momenta_ a Momenta object to know how to compute velocity momenta
 *  \param momenta_ a Momenta object to know how to compute velocity momenta
 */



template<typename T, typename DESCRIPTOR>
StochasticSGSdynamics<T,DESCRIPTOR>::StochasticSGSdynamics (
  T omega_, Momenta<T,DESCRIPTOR>& momenta_, T turbulenceInt_, T charU_, T smagoConst_, T dx_, T dt_)
  : MRTdynamics<T,DESCRIPTOR>(omega_, momenta_),
    turbulenceInt(turbulenceInt_),
    smagoConst(smagoConst_),
    charU(charU_),
    preFactor(computePreFactor(omega_,smagoConst_) )

{

  //    T invM_S_SGS[DESCRIPTOR::q][DESCRIPTOR::q];
  //    T rtSGS[DESCRIPTOR::q]; // relaxation times vector for SGS approach.
  //    for (int iPop  = 0; iPop < DESCRIPTOR::q; ++iPop)
  //    {
  //      rtSGS[iPop] = DESCRIPTOR::S[iPop];
  //    }
  //    for (int iPop  = 0; iPop < DESCRIPTOR::shearIndexes; ++iPop)
  //    {
  //      rtSGS[DESCRIPTOR::shearViscIndexes[iPop]] = omega;
  //    }
  //    for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop)
  //    {
  //      for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop)
  //      {
  //        invM_S_SGS[iPop][jPop] = T();
  //        for (int kPop = 0; kPop < DESCRIPTOR::q; ++kPop)
  //        {
  //          if (kPop == jPop)
  //          {
  //            invM_S_SGS[iPop][jPop] += DESCRIPTOR::invM[iPop][kPop] *
  //                                  rtSGS[kPop];
  //            cout << "wert"<<iPop <<jPop << "= "<<  invM_S_SGS[iPop][jPop]<< endl;
  //          }
  //        }
  //      }
  //    }
  //


}


template<typename T, typename DESCRIPTOR>
void StochasticSGSdynamics<T,DESCRIPTOR>::collide(
  Cell<T,DESCRIPTOR>& cell,
  LatticeStatistics<T>& statistics )
{
  T rho, u[DESCRIPTOR::d], pi[util::TensorVal<DESCRIPTOR >::n];



  T drift  = computeTimeScale(preFactor, rho, pi, smagoConst, X_lang_n);
  T result = getRandBMTrans(cell, turbulenceInt, charU);

  //  cout << "vor neu setzen: "<<X_lang_n<< endl;
  X_lang_n = getRandomWalk(cell, drift, result);
  // cout << "nach neu setzen: "<<X_lang_n<< endl;
  //cout << X_lang_n<< endl;
  // cout << drift<< endl;
  // cout << result<< endl;


  this->_momenta.computeAllMomenta(cell, rho, u, pi);
  T newOmega = computeOmega(this->getOmega(), preFactor, rho, pi, X_lang_n);


  T invM_S_SGS[DESCRIPTOR::q][DESCRIPTOR::q];
  T rtSGS[DESCRIPTOR::q]; // relaxation times vector for SGS approach.
  for (int iPop  = 0; iPop < DESCRIPTOR::q; ++iPop) {
    rtSGS[iPop] = DESCRIPTOR::S[iPop];
  }
  for (int iPop  = 0; iPop < DESCRIPTOR::shearIndexes; ++iPop) {
    rtSGS[DESCRIPTOR::shearViscIndexes[iPop]] = newOmega;
  }
  for (int iPop = 0; iPop < DESCRIPTOR::q; ++iPop) {
    for (int jPop = 0; jPop < DESCRIPTOR::q; ++jPop) {
      invM_S_SGS[iPop][jPop] = T();
      for (int kPop = 0; kPop < DESCRIPTOR::q; ++kPop) {
        if (kPop == jPop) {
          invM_S_SGS[iPop][jPop] += DESCRIPTOR::invM[iPop][kPop] *
                                    rtSGS[kPop];
          //cout << "wert"<<iPop <<jPop << "= "<<  invM_S_SGS[iPop][jPop]<< endl;
        }
      }
    }
  }

  T uSqr = mrtHelpers<T,DESCRIPTOR>::mrtSGSCollision(cell, rho, u, newOmega, invM_S_SGS);
  statistics.incrementStats(rho, uSqr);
}

template<typename T, typename DESCRIPTOR>
void StochasticSGSdynamics<T,DESCRIPTOR>::setOmega(T omega)
{
  this->setOmega(omega);
  preFactor = computePreFactor(omega, smagoConst);
}

template<typename T, typename DESCRIPTOR>
T StochasticSGSdynamics<T,DESCRIPTOR>::getSmagorinskyOmega(Cell<T,DESCRIPTOR>& cell, T X_lang_n )
{
  T rho, uTemp[DESCRIPTOR::d], pi[util::TensorVal<DESCRIPTOR >::n];
  this->_momenta.computeAllMomenta(cell, rho, uTemp, pi);
  T newOmega = computeOmega(this->getOmega(), preFactor, rho, pi, X_lang_n);
  return newOmega;
}



template<typename T, typename DESCRIPTOR>
T StochasticSGSdynamics<T,DESCRIPTOR>::getRandBMTrans(
  Cell<T,DESCRIPTOR>& cell,
  T turbulenceInt, T CharU )
{
  /// Random number generator based on Box Müller transform to produuce random normal
  /// distributed numbers with zero mean and

  T mean = 0.;
  T TKE_ini = 1.5*turbulenceInt*turbulenceInt*charU*charU;
  T velStDev =  sqrt(2./3.*TKE_ini);
  static double n2 = 0.0;
  static int n2_cached = 0;
  if (!n2_cached) {
    double x, y, r;
    do {
      x = 2.0*rand()/RAND_MAX - 1;
      y = 2.0*rand()/RAND_MAX - 1;

      r = x*x + y*y;
    } while ( util::nearZero(r) || r > 1.0);
    {
      double d = sqrt(-2.0*log(r)/r);
      double n1 = x*d;
      n2 = y*d;
      double result = n1*velStDev + mean;
      n2_cached = 1;
      return result;
    }
  } else {
    n2_cached = 0;
    return n2*velStDev + mean;
  }
}


/// Create Random walk
template<typename T, typename DESCRIPTOR>
T StochasticSGSdynamics<T,DESCRIPTOR>::getRandomWalk(
  Cell<T,DESCRIPTOR>& cell,
  T drift, T result)
{
  /// initialisation of model standard variation, see Pope pp 484
  T sigma = 2.3;
  X_lang_n *=drift;

  X_lang_n +=  sigma*sqrt(drift*2)*result;

  return X_lang_n;


}
/// set random walk

// template<typename T, typename DESCRIPTOR>
// void StochasticSGSdynamics<T,DESCRIPTOR>::setRandomWalk(
//   Cell<T,DESCRIPTOR>& cell,
//   T CharU, T drift, T result )
// {
//   /// initialisation of model standard variation, see Pope pp 484
//   T X_lang_n = getRandomWalk(cell, CharU, drift, result);
// }


// /// get time sclae
template<typename T, typename DESCRIPTOR>
T StochasticSGSdynamics<T,DESCRIPTOR>::computeTimeScale(
  T preFactor, T rho, T pi[util::TensorVal<DESCRIPTOR >::n], T smagoConst, T X_lang_n  )
{
  T Const = 0.2;
  T PiNeqNormSqr = pi[0]*pi[0] + 2.0*pi[1]*pi[1] + pi[2]*pi[2];
  if (util::TensorVal<DESCRIPTOR >::n == 6) {
    PiNeqNormSqr += pi[2]*pi[2] + pi[3]*pi[3] + 2*pi[4]*pi[4] +pi[5]*pi[5];
  }
  T PiNeqNorm    = sqrt(PiNeqNormSqr);

  /// SGS dissipation is calcualted directly withou any filter size due to effeiciency in tau
  // for post processing this has to be evaluated seperately with S_ij³
  T diss_corr = smagoConst*smagoConst*PiNeqNorm*PiNeqNorm*PiNeqNorm*(1+ X_lang_n);

  T tau= Const*pow(( 1. / diss_corr ), 1./3.);
  T drift = 1./tau;
  /// deterministic drift time scale T_L see Pope pp. 484
  return drift;

}


// // // /// set timescale
// template<typename T, typename DESCRIPTOR>
// void StochasticSGSdynamics<T,DESCRIPTOR>::setTimeScale(
//   T preFactor, T rho, T pi[util::TensorVal<DESCRIPTOR >::n], T smagoConst, T X_lang_n)
// {
//   T drift = computeTimeScale(preFactor, rho, pi, smagoConst, X_lang_n);
// }


template<typename T, typename DESCRIPTOR>
T StochasticSGSdynamics<T,DESCRIPTOR>::computePreFactor(T omega, T smagoConst)
{
  return (T)smagoConst*smagoConst*descriptors::invCs2<T,DESCRIPTOR>()*descriptors::invCs2<T,DESCRIPTOR>()*2*sqrt(2);
}

template<typename T, typename DESCRIPTOR>
T StochasticSGSdynamics<T,DESCRIPTOR>::computeOmega(T omega0, T preFactor, T rho, T pi[util::TensorVal<DESCRIPTOR >::n], T X_lang_n)
{
  T PiNeqNormSqr = pi[0]*pi[0] + 2.0*pi[1