1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2013, 2015 Gilles Zahnd, Mathias J. Krause
* Marie-Luise Maier
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef FRAME_CHANGE_F_3D_H
#define FRAME_CHANGE_F_3D_H
#include<vector>
#include<string>
#include "analyticalF.h"
/** \file
This file contains two different classes of functors, in the FIRST part
- for simulations in a rotating frame
- different functors for
velocity (3d, RotatingLinear3D),
pressure (1d, RotatingQuadratic1D) and
force (3d, RotatingForceField3D)
The functors return the displacement of a point x in a fixed amount of time.
The ones in the SECOND part are useful to set Poiseuille velocity profiles on
- pipes with round cross-section and
- pipes with square-shaped cross-section.
*/
/** To enable simulations in a rotating frame, the axis is set in the
* constructor with axisPoint and axisDirection. The axisPoint can be the
* coordinate of any point on the axis. The axisDirection has to be a normed to
* 1. The pulse w is in rad/s. It determines the pulse speed by its norm while
* the trigonometric or clockwise direction is determined by its sign: When the
* axisDirection is pointing "towards you", a positive pulse makes it turn in
* the trigonometric way. It has to be noticed that putting both axisDirection
* into -axisDirection and w into -w yields an exactly identical situation.
*/
namespace olb {
template<typename T> class SuperGeometry3D;
// PART 1: /////////////////////////////////////////////////////////////////////
// Functors for rotating the coordinate system (velocity, pressure, force,...)
/**
* This functor gives a linar profile for a given point x as it computes
* the distance between x and the axis.
*
* The field in outcome is the velocity field of q rotating solid
*/
/// Functor with a linear profile e.g. for rotating velocity fields.
template <typename T>
class RotatingLinear3D final : public AnalyticalF3D<T,T> {
protected:
std::vector<T> axisPoint;
std::vector<T> axisDirection;
T w;
T scale;
public:
RotatingLinear3D(std::vector<T> axisPoint_, std::vector<T> axisDirection_, T w_, T scale_=1);
bool operator()(T output[], const T x[]) override;
};
/**
* This functor gives a linar profile in an annulus for a given point x between the inner and outer radius as it computes
* the distance between x and the inner and outer radius.
*
* The field in outcome is the velocity field of q rotating solid in an annulus
*/
/// Functor with a linear profile e.g. for rotating velocity fields.
template <typename T>
class RotatingLinearAnnulus3D final : public AnalyticalF3D<T,T> {
protected:
std::vector<T> axisPoint;
std::vector<T> axisDirection;
T w;
T ri;
T ro;
T scale;
public:
RotatingLinearAnnulus3D(std::vector<T> axisPoint_, std::vector<T> axisDirection_, T w_, T ri_, T ro_, T scale_=1);
bool operator()(T output[], const T x[]);
};
/**
* This functor gives a parabolic profile for a given point x as it computes
* the distance between x and the axis.
*
* This field is a scalar field, a vector with one component will be used
*/
/// Functor with a parabolic profile e.g. for rotating pressure fields.
template <typename T>
class RotatingQuadratic1D final : public AnalyticalF3D<T,T> {
protected:
std::vector<T> axisPoint;
std::vector<T> axisDirection;
T w;
T scale;
T additive;
public:
RotatingQuadratic1D(std::vector<T> axisPoint_, std::vector<T> axisDirection_,
T w_, T scale_=1, T additive_=0);
bool operator()(T output[], const T x[]) override;
};
// PART 2: /////////////////////////////////////////////////////////////////////
// Functors for setting velocities on a velocity boundary of a pipe
/**
* This functor returns a quadratic Poiseuille profile for use with a pipe with
* round cross-section. It uses cylinder coordinates and is valid for the
* entire length of the pipe.
*
* This functor gives a parabolic velocity profile for a given point x as it
* computes the distance between x and the axis.
*
* The axis is set in the input with axisPoint and axisDirection. The axisPoint
* can be the coordinate of any point where the axis passes.
* axisDirection has to be normed to 1.
* Once the axis is set in the middle of the pipe, the radius of the
* pipe "radius" and the velocity in the middle of the pipe "maxVelocity"
* determine the Poisseuille profile entierly.
*/
/// Velocity profile for round pipes and power law fluids: u(r)=u_max*(1-(r/R)^((n+1)/n)). The exponent n characterizes the fluid behavior.
/// n<1: Pseudoplastic, n=1: Newtonian fluid, n>1: Dilatant
template <typename T>
class CirclePowerLaw3D : public AnalyticalF3D<T,T> {
protected:
std::vector<T> _center;
std::vector<T> _normal;
T _radius;
T _maxVelocity;
T _n;
T _scale;
public:
CirclePowerLaw3D(std::vector<T> axisPoint, std::vector<T> axisDirection, T maxVelocity, T radius, T n, T scale = T(1));
CirclePowerLaw3D(T center0, T center1, T center2, T normal0, T normal1, T normal2, T radius, T maxVelocity, T n, T scale = T(1));
CirclePowerLaw3D(SuperGeometry3D<T>& superGeometry, int material, T maxVelocity, T n, T scale = T(1));
CirclePowerLaw3D(bool useMeanVelocity, std::vector<T> axisPoint, std::vector<T> axisDirection, T Velocity, T radius, T n, T scale = T(1));
CirclePowerLaw3D(bool useMeanVelocity, T center0, T center1, T center2, T normal0, T normal1, T normal2, T radius, T Velocity, T n, T scale = T(1));
CirclePowerLaw3D(bool useMeanVelocity, SuperGeometry3D<T>& superGeometry, int material, T Velocity, T n, T scale = T(1));
/// Returns centerpoint vector
std::vector<T> getCenter()
{
return _center;
};
/// Returns normal vector
std::vector<T> getNormal()
{
return _normal;
};
/// Returns radi
T getRadius()
{
return _radius;
};
bool operator()(T output[], const T x[]) override;
};
/// Velocity profile for round pipes and turbulent flows: u(r)=u_max*(1-r/R)^(1/n) The exponent n can be calculated by n = 1.03 * ln(Re) - 3.6
/// n=7 is used for many flow applications
template <typename T>
class CirclePowerLawTurbulent3D : public CirclePowerLaw3D<T> {
public:
CirclePowerLawTurbulent3D(std::vector<T> axisPoint_, std::vector<T> axisDirection, T maxVelocity, T radius, T n, T scale = T(1));
CirclePowerLawTurbulent3D(T center0, T center1, T center2, T normal0, T normal1, T normal2, T radius, T maxVelocity, T n, T scale = T(1));
CirclePowerLawTurbulent3D(SuperGeometry3D<T>& superGeometry, int material, T maxVelocity, T n, T scale = T(1));
CirclePowerLawTurbulent3D(bool useMeanVelocity, std::vector<T> axisPoint, std::vector<T> axisDirection, T Velocity, T radius, T n, T scale = T(1));
CirclePowerLawTurbulent3D(bool useMeanVelocity, T center0, T center1, T center2, T normal0, T normal1, T normal2, T radius, T Velocity, T n, T scale = T(1));
CirclePowerLawTurbulent3D(bool useMeanVelocity, SuperGeometry3D<T>& superGeometry, int material, T Velocity, T n, T scale = T(1));
bool operator()(T output[], const T x[]) override;
};
/// Velocity profile for round pipes and a laminar flow of a Newtonian fluid: u(r)=u_max*(1-(r/R)^2)
template <typename T>
class CirclePoiseuille3D final : public CirclePowerLaw3D<T> {
public:
CirclePoiseuille3D(std::vector<T> axisPoint, std::vector<T> axisDirection, T maxVelocity, T radiu
|