1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2017 Adrian Kummerlaender
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef SUPER_LP_NORM_3D_HH
#define SUPER_LP_NORM_3D_HH
#include "superLpNorm3D.h"
#include "blockLpNorm3D.h"
#include "functors/lattice/superBaseF3D.h"
#include "functors/lattice/indicator/superIndicatorF3D.h"
#include "geometry/superGeometry3D.h"
#include "latticeIntegralCommon.h"
#include "utilities/functorPtr.hh"
namespace olb {
template <typename T, typename W, int P>
SuperLpNorm3D<T,W,P>::SuperLpNorm3D(FunctorPtr<SuperF3D<T,W>>&& f,
FunctorPtr<SuperIndicatorF3D<T>>&& indicatorF)
: SuperF3D<T,W>(f->getSuperStructure(),1),
_f(std::move(f)),
_indicatorF(std::move(indicatorF))
{
OLB_ASSERT(_f->getSourceDim() == _indicatorF->getSourceDim(),
"functor source dimension equals indicator source dimension");
this->getName() = "L" + std::to_string(P) + "Norm(" + _f->getName() + ")";
LoadBalancer<T>& load = _f->getSuperStructure().getLoadBalancer();
if ( _f->getBlockFSize() == load.size() &&
_indicatorF->getBlockFSize() == load.size() ) {
for (int iC = 0; iC < load.size(); ++iC) {
this->_blockF.emplace_back(
new BlockLpNorm3D<T,W,P>(_f->getBlockF(iC),
_indicatorF->getBlockIndicatorF(iC))
);
}
}
}
template <typename T, typename W, int P>
SuperLpNorm3D<T,W,P>::SuperLpNorm3D(FunctorPtr<SuperF3D<T,W>>&& f,
SuperGeometry3D<T>& geometry,
FunctorPtr<SuperIndicatorF3D<T>>&& indicatorF)
: SuperLpNorm3D(std::forward<decltype(f)>(f),
std::forward<decltype(indicatorF)>(indicatorF))
{ }
template <typename T, typename W, int P>
SuperLpNorm3D<T,W,P>::SuperLpNorm3D(FunctorPtr<SuperF3D<T,W>>&& f,
SuperGeometry3D<T>& geometry,
std::vector<int> materials)
: SuperLpNorm3D(std::forward<decltype(f)>(f),
geometry.getMaterialIndicator(std::move(materials)))
{ }
template <typename T, typename W, int P>
SuperLpNorm3D<T,W,P>::SuperLpNorm3D(FunctorPtr<SuperF3D<T,W>>&& f,
SuperGeometry3D<T>& geometry,
int material)
: SuperLpNorm3D(std::forward<decltype(f)>(f),
geometry.getMaterialIndicator(material))
{ }
template <typename T, typename W, int P>
bool SuperLpNorm3D<T,W,P>::operator() (W output[], const int input[])
{
_f->getSuperStructure().communicate();
CuboidGeometry3D<T>& cGeometry = _f->getSuperStructure().getCuboidGeometry();
LoadBalancer<T>& load = _f->getSuperStructure().getLoadBalancer();
output[0] = W(0);
W outputTmp[_f->getTargetDim()];
int inputTmp[_f->getSourceDim()];
for (int iC = 0; iC < load.size(); ++iC) {
Cuboid3D<T>& cuboid = cGeometry.get(load.glob(iC));
const int nX = cuboid.getNx();
const int nY = cuboid.getNy();
const int nZ = cuboid.getNz();
const T weight = pow(cuboid.getDeltaR(), 3);
inputTmp[0] = load.glob(iC);
for (inputTmp[1] = 0; inputTmp[1] < nX; ++inputTmp[1]) {
for (inputTmp[2] = 0; inputTmp[2] < nY; ++inputTmp[2]) {
for (inputTmp[3] = 0; inputTmp[3] < nZ; ++inputTmp[3]) {
if (_indicatorF(inputTmp)) {
_f(outputTmp, inputTmp);
for (int iDim = 0; iDim < _f->getTargetDim(); ++iDim) {
output[0] = LpNormImpl<T,W,P>()(output[0], outputTmp[iDim], weight);
}
}
}
}
}
}
#ifdef PARALLEL_MODE_MPI
if (P == 0) {
singleton::mpi().reduceAndBcast(output[0], MPI_MAX);
}
else {
singleton::mpi().reduceAndBcast(output[0], MPI_SUM);
}
#endif
output[0] = LpNormImpl<T,W,P>().enclose(output[0]);
return true;
}
}
#endif
|