summaryrefslogtreecommitdiff
path: root/src/functors/lattice/latticeFrameChangeF3D.hh
blob: 709a76bff18b66957ae60dc9651914871a83bf0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*  This file is part of the OpenLB library
 *
 *  Copyright (C) 2013, 2015 Gilles Zahnd, Mathias J. Krause
 *  Marie-Luise Maier
 *  E-mail contact: info@openlb.net
 *  The most recent release of OpenLB can be downloaded at
 *  <http://www.openlb.net/>
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public
 *  License along with this program; if not, write to the Free
 *  Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA  02110-1301, USA.
*/

#ifndef LATTICE_FRAME_CHANGE_F_3D_HH
#define LATTICE_FRAME_CHANGE_F_3D_HH

#include<cmath>

#include "latticeFrameChangeF3D.h"
#include "functors/analytical/frameChangeF2D.h"
#include "core/superLattice3D.h"
#include "dynamics/lbHelpers.h"  // for computation of lattice rho and velocity
#include "utilities/vectorHelpers.h"  // for normalize
#include "geometry/superGeometry3D.h"

namespace olb {


template <typename T, typename DESCRIPTOR>
RotatingForceField3D<T,DESCRIPTOR>::RotatingForceField3D
(SuperLattice3D<T,DESCRIPTOR>& sLattice_, SuperGeometry3D<T>& superGeometry_,
 const UnitConverter<T,DESCRIPTOR>& converter_, std::vector<T> axisPoint_,
 std::vector<T> axisDirection_, T w_, bool centrifugeForceOn_,
 bool coriolisForceOn_)
  : SuperLatticeF3D<T,DESCRIPTOR>(sLattice_,3), sg(superGeometry_),
    converter(converter_), axisPoint(axisPoint_), axisDirection(axisDirection_),
    w(w_), centrifugeForceOn(centrifugeForceOn_), coriolisForceOn(coriolisForceOn_),
    velocity(sLattice_,converter_), rho(sLattice_)
{
  this->getName() = "rotatingForce";
}


template <typename T, typename DESCRIPTOR>
bool RotatingForceField3D<T,DESCRIPTOR>::operator()(T output[], const int x[])
{
  std::vector<T> F_centri(3,0);
  std::vector<T> F_coriolis(3,0);

  if ( this->_sLattice.getLoadBalancer().rank(x[0]) == singleton::mpi().getRank() ) {
    // local coords are given, fetch local cell and compute value(s)
    std::vector<T> physR(3,T());
    this->sg.getCuboidGeometry().getPhysR(&(physR[0]),&(x[0]));

    T scalar =  (physR[0]-axisPoint[0])*axisDirection[0]
                +(physR[1]-axisPoint[1])*axisDirection[1]
                +(physR[2]-axisPoint[2])*axisDirection[2];

    if (centrifugeForceOn) {
      F_centri[0] = w*w*(physR[0]-axisPoint[0]-scalar*axisDirection[0]);
      F_centri[1] = w*w*(physR[1]-axisPoint[1]-scalar*axisDirection[1]);
      F_centri[2] = w*w*(physR[2]-axisPoint[2]-scalar*axisDirection[2]);
    }
    if (coriolisForceOn) {
      T _vel[3];
      (velocity)(_vel,x);
      F_coriolis[0] = -2*w*(axisDirection[1]*_vel[2]-axisDirection[2]*_vel[1]);
      F_coriolis[1] = -2*w*(axisDirection[2]*_vel[0]-axisDirection[0]*_vel[2]);
      F_coriolis[2] = -2*w*(axisDirection[0]*_vel[1]-axisDirection[1]*_vel[0]);
    }
    // return latticeForce
    output[0] = (F_coriolis[0]+F_centri[0]) * converter.getConversionFactorTime() / converter.getConversionFactorVelocity();
    output[1] = (F_coriolis[1]+F_centri[1]) * converter.getConversionFactorTime() / converter.getConversionFactorVelocity();
    output[2] = (F_coriolis[2]+F_centri[2]) * converter.getConversionFactorTime() / converter.getConversionFactorVelocity();
  }
  return true;
}


template <typename T, typename DESCRIPTOR>
HarmonicOscillatingRotatingForceField3D<T,DESCRIPTOR>::HarmonicOscillatingRotatingForceField3D
(SuperLattice3D<T,DESCRIPTOR>& sLattice_, SuperGeometry3D<T>& superGeometry_,
 const UnitConverter<T,DESCRIPTOR>& converter_, std::vector<T> axisPoint_,
 std::vector<T> axisDirection_, T amplitude_, T frequency_)
  : SuperLatticeF3D<T,DESCRIPTOR>(sLattice_,3), sg(superGeometry_),
    converter(converter_), axisPoint(axisPoint_), axisDirection(axisDirection_),
    amplitude(amplitude_), resonanceFrequency(2.*4.*std::atan(1.0)*frequency_), w(0.0), dwdt(0.0),
    velocity(sLattice_,converter_)
{
  this->getName() = "harmonicOscillatingrotatingForce";
}

template <typename T, typename DESCRIPTOR>
void HarmonicOscillatingRotatingForceField3D<T,DESCRIPTOR>::updateTimeStep(int iT) {
  w = resonanceFrequency * amplitude * cos(resonanceFrequency*converter.getPhysTime(iT));
  dwdt = -resonanceFrequency * resonanceFrequency * amplitude * sin(resonanceFrequency*converter.getPhysTime(iT));
}


template <typename T, typename DESCRIPTOR>
bool HarmonicOscillatingRotatingForceField3D<T,DESCRIPTOR>::operator()(T output[], const int x[])
{


  std::vector<T> F_centri(3,0);
  std::vector<T> F_coriolis(3,0);
  std::vector<T> F_euler(3,0);

  if ( this->_sLattice.getLoadBalancer().rank(x[0]) == singleton::mpi().getRank() ) {
    // local coords are given, fetch local cell and compute value(s)
    std::vector<T> physR(3,T());
    this->sg.getCuboidGeometry().getPhysR(&(physR[0]),&(x[0]));

    T scalar =  (physR[0]-axisPoint[0])*axisDirection[0]
                +(physR[1]-axisPoint[1])*axisDirection[1]
                +(physR[2]-axisPoint[2])*axisDirection[2];

    T r[3];
    r[0] = physR[0]-axisPoint[0]-scalar*axisDirection[0];
    r[1] = physR[1]-axisPoint[1]-scalar*axisDirection[1];
    r[2] = physR[2]-axisPoint[2]-scalar*axisDirection[2];

    F_centri[0] = w*w*(r[0]);
    F_centri[1] = w*w*(r[1]);
    F_centri[2] = w*w*(r[2]);

    T _vel[3];
    (velocity)(_vel,x);
    F_coriolis[0] = -2*w*(axisDirection[1]*_vel[2]-axisDirection[2]*_vel[1]);
    F_coriolis[1] = -2*w*(axisDirection[2]*_vel[0]-axisDirection[0]*_vel[2]);
    F_coriolis[2] = -2*w*(axisDirection[0]*_vel[1]-axisDirection[1]*_vel[0]);

    F_euler[0] = -dwdt*(axisDirection[1]*r[2]-axisDirection[2]*r[1]);
    F_euler[1] = -dwdt*(axisDirection[2]*r[0]-axisDirection[0]*r[2]);
    F_euler[2] = -dwdt*(axisDirection[0]*r[1]-axisDirection[1]*r[0]);


    // return latticeForce
    output[0] = (F_coriolis[0]+F_centri[0]+F_euler[0]) * converter.getConversionFactorTime() / converter.getConversionFactorVelocity();
    output[1] = (F_coriolis[1]+F_centri[1]+F_euler[1]) * converter.getConversionFactorTime() / converter.getConversionFactorVelocity();
    output[2] = (F_coriolis[2]+F_centri[2]+F_euler[2]) * converter.getConversionFactorTime() / converter.getConversionFactorVelocity();
  }
  return true;
}


} // end namespace olb

#endif