1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2013, 2014 Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* Representation of a statistic for a parallel 2D geometry -- header file.
*/
#ifndef SUPER_GEOMETRY_STATISTICS_2D_H
#define SUPER_GEOMETRY_STATISTICS_2D_H
#include <map>
#include <string>
#include <vector>
#include "geometry/superGeometry2D.h"
#include "io/ostreamManager.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
/// Representation of a statistic for a parallel 2D geometry
/** A super geomety statistic computes different integral
* values, like total number of different materials,
* materials of any kind, min./max. physical position, of an
* underlying super geoemtry.
*
* This class is not intended to be derived from.
*/
template<typename T>
class SuperGeometry2D;
template<typename T>
class SuperGeometryStatistics2D {
private:
/// Points to the underlying data from which the statistics is taken
SuperGeometry2D<T>* _superGeometry;
/// Specifies if an update is needed
bool _statisticsUpdateNeeded;
/// Size of ghost voxel layer
int _overlap;
/// Number of different material numbers
int _nMaterials;
/// Mapping a material number to the number of this kind found in the super geometry
std::map<int, int> _material2n;
/// Mapping a material number to the min. physical position in each space direction
std::map<int, std::vector<T> > _material2min;
/// Mapping a material number to the max. physical position in each space direction
std::map<int, std::vector<T> > _material2max;
/// class specific cout
mutable OstreamManager clout;
public:
/// Constructor
SuperGeometryStatistics2D(SuperGeometry2D<T>* superGeometry);
/// Copy constructor
SuperGeometryStatistics2D(SuperGeometryStatistics2D const& rhs);
/// Copy assignment
SuperGeometryStatistics2D<T>& operator=(SuperGeometryStatistics2D const& rhs);
/// Read and write access to a flag, which indicates if an uptate is needed (=true)
bool& getStatisticsStatus();
/// Read only access to a flag, which indicates if an uptate is needed (=true)
bool const & getStatisticsStatus() const;
/// Updates the statistics if it is really needed
void update(bool verbose=false);
/// Returns the number of different materials
int getNmaterials();
/// Returns the number of voxels for a given material number
int getNvoxel(int material);
/// Returns the number of voxels with material!=0
int getNvoxel();
/// Returns the min. phys position in each direction
std::vector<T> getMinPhysR(int material);
/// Returns the max. phys position in each direction
std::vector<T> getMaxPhysR(int material);
/// Returns the phys extend as length in each direction
std::vector<T> getPhysExtend(int material);
/// Returns the phys radius as length in each direction
std::vector<T> getPhysRadius(int material);
/// Returns the center position
std::vector<T> getCenterPhysR(int material);
/// Returns the boundary type which is characterized by a discrte normal (c.f. Zimny)
std::vector<int> getType(int iC, int iX, int iY);
/// Returns normal that points into the fluid for paraxial surfaces
std::vector<T> computeNormal (int material);
/// Returns discrete normal with norm maxNorm that points into the fluid for paraxial surfaces
/// maxNorm=1.1 implies only normals parallel to the axises
std::vector<int> computeDiscreteNormal (int material, T maxNorm = 1.1);
/// Prints some statistic information, i.e. the number of voxels and min. max. physical position for each different material
void print();
};
} // namespace olb
#endif
|