1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2013, 2014 Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* Representation of a statistic for a parallel 3D geometry -- header file.
*/
#ifndef SUPER_GEOMETRY_STATISTICS_3D_H
#define SUPER_GEOMETRY_STATISTICS_3D_H
#include <map>
#include <string>
#include <vector>
#include "communication/mpiManager.h"
#include "geometry/superGeometry3D.h"
#include "io/ostreamManager.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
/// Representation of a statistic for a parallel 3D geometry
/** A super geometry statistic computes different integral
* values, like total number of different materials,
* materials of any kind, min./max. physical position, of an
* underlying super geometry.
*
* This class is not intended to be derived from.
*/
template<typename T>
class SuperGeometry3D;
template<typename T>
class SuperGeometryStatistics3D {
private:
/// Points to the underlying data from which the statistics is taken
SuperGeometry3D<T>* _superGeometry;
/// Specifies if an update is needed
bool _statisticsUpdateNeeded;
/// Size of ghost voxel layer
int _overlap;
/// Number of different material numbers
int _nMaterials;
/// Mapping a material number to the number of this kind found in the super geometry
std::map<int, int> _material2n;
/// Mapping a material number to the min. physical position in each space direction
std::map<int, std::vector<T> > _material2min;
/// Mapping a material number to the max. physical position in each space direction
std::map<int, std::vector<T> > _material2max;
/// Componentwise min extension over all material numbers. Default is 0.
std::vector<T> _minOverMaterial;
/// Componentwise maximal extension over all material numbers. Default is 0.
std::vector<T> _maxOverMaterial;
/// class specific cout
mutable OstreamManager clout;
public:
/// Constructor
SuperGeometryStatistics3D(SuperGeometry3D<T>* superGeometry);
/// Copy constructor
SuperGeometryStatistics3D(SuperGeometryStatistics3D const& rhs);
/// Copy assignment
SuperGeometryStatistics3D<T>& operator=(SuperGeometryStatistics3D const& rhs);
/// Read and write access to a flag, which indicates if an uptate is needed (=true)
bool& getStatisticsStatus();
/// Read only access to a flag, which indicates if an uptate is needed (=true)
bool const & getStatisticsStatus() const;
/// Updates the statistics if it is really needed
void update(bool verbose=false);
/// Returns the number of different materials
int getNmaterials();
/// Returns the number of voxels for a given material number
int getNvoxel(int material);
/// Returns the number of voxels with material!=0
int getNvoxel();
/// Returns the min. phys position in each direction corresponding to material number
std::vector<T> getMinPhysR(int material);
/// Returns the min. phys position in each direction corresponding to all non-zero material numbers
std::vector<T> getMinPhysR();
/// Returns the max. phys position in each direction corresponding to material number
std::vector<T> getMaxPhysR(int material);
/// Returns the max. phys position in each direction corresponding to all non-zero material numbers
std::vector<T> getMaxPhysR();
/// Returns the phys extend as length in each direction
std::vector<T> getPhysExtend(int material);
/// Returns the phys radius as length in each direction
std::vector<T> getPhysRadius(int material);
/// Returns the center position
std::vector<T> getCenterPhysR(int material);
/// Returns the boundary type which is characterized by a discrte normal (c.f. Zimny)
std::vector<int> getType(int iC, int iX, int iY, int iZ);
/// Returns normal that points into the fluid for paraxial surfaces
std::vector<T> computeNormal (int material);
/// Returns discrete normal with norm maxNorm that points into the fluid for paraxial surfaces
/// maxNorm=1.1 implies only normals parallel to the axises
std::vector<int> computeDiscreteNormal (int material, T maxNorm = 1.1);
/// Returns sqrt( maxX^2 + maxY^2 + maxZ^2 ) max over a certain material number
T computeMaxPhysDistance( int material );
/// Returns sqrt( maxX^2 + maxY^2 + maxZ^2 ) max over all material numbers
T computeMaxPhysDistance();
/// Prints some statistic information, i.e. the number of voxels and min. max. physical position for each different material
void print();
};
} // namespace olb
#endif
|