summaryrefslogtreecommitdiff
path: root/src/particles/forces/interpMagForceForMagP3D.hh
blob: a088bbbc20c1d20a339459962b7fe810aa1a040d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*  This file is part of the OpenLB library
 *
 *  Copyright (C) 2015 Marie-Luise Maier, Mathias J. Krause, Sascha Janz
 *  E-mail contact: info@openlb.net
 *  The most recent release of OpenLB can be downloaded at
 *  <http://www.openlb.net/>
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public
 *  License along with this program; if not, write to the Free
 *  Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA  02110-1301, USA.
 */

/// Magnetic field that creates magnetization in wire has to be orthogonal to the wire.
/// to calculate the magnetic force on particles around a cylinder
/// (J. Lindner et al. / Computers and Chemical Engineering 54 (2013) 111-121)
#ifndef InterpMagForceForMagP3D_HH
#define InterpMagForceForMagP3D_HH

#include <cmath>
#include <vector>
#include "interpMagForceForMagP3D.h"

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

namespace olb {

template<typename T, template<typename U> class PARTICLETYPE, typename DESCRIPTOR>
InterpMagForceForMagP3D<T, PARTICLETYPE, DESCRIPTOR>::InterpMagForceForMagP3D(T scale, T scaleT)
  : Force3D<T, PARTICLETYPE>(),
    _scale(scale),
    _scaleT(scaleT)
{
//  this->_name = "InterpMagForceForMagP3D";
}

template<typename T, template<typename U> class PARTICLETYPE, typename DESCRIPTOR>
void InterpMagForceForMagP3D<T, PARTICLETYPE, DESCRIPTOR>::applyForce(
  typename std::deque<PARTICLETYPE<T> >::iterator p, int pInt,
  ParticleSystem3D<T, PARTICLETYPE>& pSys)
{

  std::vector < std::pair<size_t, T> > ret_matches;
  pSys.getDetection()->getMatches(pInt, ret_matches);
  // std::random_shuffle ( ret_matches.begin(), ret_matches.end() );

  /*const*/ PARTICLETYPE<T>* p2 = NULL;
  typename std::vector<std::pair<size_t, T> >::iterator it =
    ret_matches.begin();

  Vector<T, 3> dMom_1 = Vector<T, 3>((p->getMoment()));
  if (dMom_1.norm() > std::numeric_limits<T>::epsilon()) {
    T m_p1 = p->getMagnetisation();

    for (; it != ret_matches.end(); it++) {
      if (it->second >= std::numeric_limits < T > ::epsilon()) {

        p2 = &pSys[it->first];

        // No magnetic force between particles which are in physcal contact
        // if ((p2->getRad() + p->getRad()) <= std::sqrt(it->second)) {

        // get neighbour particle moment
        Vector<T, 3> dMom_2((p2->getMoment()));
        if (dMom_2.norm() > std::numeric_limits<T>::epsilon()) {
          T m_p2 = p2->getMagnetisation();

          // given moment magnitudes as scale factors
          T m_i_scaleFactor = dMom_1.norm();
          T m_j_scaleFactor = dMom_2.norm();

          // normalised moment directions
          Vector<T, 3> n_i(dMom_1);
          n_i.normalize();
          Vector<T, 3> n_j(dMom_2);
          n_j.normalize();

          // constants
          T mu_0 = 4 * M_PI * 1.e-7; // magnetic constant
          T mu_i = 4. / 3 * M_PI * pow(p->getRad(), 3) * m_p1 * m_i_scaleFactor ; // magnetic moment of particle i
          T mu_j = 4. / 3 * M_PI * pow(p2->getRad(), 3) * m_p2 * m_j_scaleFactor ; // of particle j

          //vector from particle1 to particle2
          Vector<T, 3> r_ij;
          //S Das wäre der Richtungsvektor von p2 zu p und nicht von p zu p2, aber die Rechung unten berücksichtigt das wohl, da richtige Ergebnisse
          r_ij[0] = p->getPos()[0] - p2->getPos()[0];
          r_ij[1] = p->getPos()[1] - p2->getPos()[1];
          r_ij[2] = p->getPos()[2] - p2->getPos()[2];

          // distance from particle1 to particle2
          T r = r_ij.norm();

          // normalised direction vector
          Vector<T, 3> t_ij(r_ij);
          t_ij.normalize();

          // FORCE of Dipole 1 on Dipole 2
          Vector<T, 3> mi = {n_i};
          mi *= mu_i;
          Vector<T, 3> mj = {n_j};
          mj *= mu_j;
          Vector<T, 3> rn = {r_ij};
          rn *= -1. ;
          normalize(rn);
          T scalar_termF = (3 * mu_0 ) / (4 * M_PI * std::pow(r, 4));
          Vector<T, 3> force = mj * (mi * rn) + mi * (mj * rn) + rn * (mi * mj) - 5 * rn * (mi * rn) * (mj * rn) ;
          force *= scalar_termF;

          // TORQUE of Dipole 1 on Dipole 2
          // T_ij = -[(mu_0*mu_i*mu_j)/(4*M_PI*r^3)][n_i x n_j - 3(n_j * t_ij)n_i x t_ij]
          T scalar_termT = - (mu_0 * mu_i * mu_j) / (4 * M_PI * std::pow(r, 3));
          Vector<T, 3> torque = crossProduct3D(n_i, n_j);
          torque -= crossProduct3D( 3 * (n_j * t_ij) * n_i, t_ij);
          torque *= scalar_termT;

          // Force an torque for overlapping particles 
          if ((p2->getRad() + p->getRad()) >= std::sqrt(it->second)) {

            normalize(force);
            torque *= 0;
            force *= mu_0 * pow((mu_i + mu_j) / 2., 2.) / (4 * M_PI * pow(r / 2, 4.)) ;
          }

          p->getTorque()[0] += 0.5 * torque[0] * _scaleT;
          p->getTorque()[1] += 0.5 * torque[1] * _scaleT;
          p->getTorque()[2] += 0.5 * torque[2] * _scaleT;
          p->getForce()[0] -= 0.5 * force[0] * _scale ;
          p->getForce()[1] -= 0.5 * force[1] * _scale ;
          p->getForce()[2] -= 0.5 * force[2] * _scale ;
          p2->getTorque()[0] -= 0.5 * torque[0] * _scaleT;
          p2->getTorque()[1] -= 0.5 * torque[1] * _scaleT;
          p2->getTorque()[2] -= 0.5 * torque[2] * _scaleT;
          p2->getForce()[0] += 0.5 * force[0] * _scale ;
          p2->getForce()[1] += 0.5 * force[1] * _scale ;
          p2->getForce()[2] += 0.5 * force[2] * _scale ;

        }
        // }
      }
    }
  }
}

}

#endif // INTERPMAGFORCEFORMAGP3D_H_