aboutsummaryrefslogtreecommitdiff
path: root/content
diff options
context:
space:
mode:
Diffstat (limited to 'content')
-rw-r--r--content/analysis_3.tex8
1 files changed, 8 insertions, 0 deletions
diff --git a/content/analysis_3.tex b/content/analysis_3.tex
index 340ca55..059dce2 100644
--- a/content/analysis_3.tex
+++ b/content/analysis_3.tex
@@ -658,3 +658,11 @@ Seien $f, g \in \L^p(\mu)$. Dann gilt $f + g \in \L^p(\mu)$ und:
\vspace{-2mm}
$$\| f + g \|_p \leq \|f\|_p + \|g\|_p$$
+
+\subsection*{Satz von Riesz-Fischer}
+
+Sei $1 \leq p < \infty$, $(f_n)$ Cauchyfolge in $\L^p(\mu)$ bzgl. $\|\cdot\|_p$.
+
+Dann existieren $f, h \in \L^p(\mu)$ und Teilfolge $(f_{n_j})_j$ s.d. diese f.ü. gegen $f$ strebt, $\forall j \in \N : |f_{n_j}| \leq h$ f.ü. gilt und $\displaystyle\lim_{n \to \infty} \|f_n - f\|_p = 0$ gilt.
+
+$L^p(\mu)$ ist ein Banach-, für $p=2$ ein Hilbertraum.