diff options
Restore wrongly deleted file from 75d0088
Diffstat (limited to 'implosion.py')
| -rw-r--r-- | implosion.py | 228 | 
1 files changed, 228 insertions, 0 deletions
| diff --git a/implosion.py b/implosion.py new file mode 100644 index 0000000..c70f21a --- /dev/null +++ b/implosion.py @@ -0,0 +1,228 @@ +import pyopencl as cl +mf = cl.mem_flags + +from string import Template + +import numpy +import matplotlib.pyplot as plt + +import time + +kernel = """ +float constant w[9] = { +    1./36., 1./9., 1./36., +    1./9. , 4./9., 1./9. , +    1./36 , 1./9., 1./36. +}; + +unsigned int indexOfDirection(int i, int j) { +    return (i+1) + 3*(1-j); +} + +unsigned int indexOfCell(int x, int y) +{ +    return y * $nX + x; +} + +unsigned int idx(int x, int y, int i, int j) { +    return indexOfDirection(i,j)*$nCells + indexOfCell(x,y); +} + +__global float f_i(__global __read_only float* f, int x, int y, int i, int j) { +    return f[idx(x,y,i,j)]; +} + +float comp(int i, int j, float2 v) { +    return i*v.x + j*v.y; +} + +float sq(float x) { +    return x*x; +} + +float f_eq(float w, float d, float2 v, int i, int j, float dotv) { +    return w * d * (1.f + 3.f*comp(i,j,v) + 4.5f*sq(comp(i,j,v)) - 1.5f*dotv); +} + +__kernel void collide_and_stream(__global __write_only float* f_a, +                                 __global __read_only  float* f_b, +                                 __global __write_only float* moments, +                                 __global __read_only  int* material) +{ +    const unsigned int gid = indexOfCell(get_global_id(0), get_global_id(1)); + +    const uint2 cell = (uint2)(get_global_id(0), get_global_id(1)); + +    const int m = material[gid]; + +    if ( m == 0 ) { +        return; +    } + +    float f0 = f_i(f_b, cell.x+1, cell.y-1, -1, 1); +    float f1 = f_i(f_b, cell.x  , cell.y-1,  0, 1); +    float f2 = f_i(f_b, cell.x-1, cell.y-1,  1, 1); +    float f3 = f_i(f_b, cell.x+1, cell.y  , -1, 0); +    float f4 = f_i(f_b, cell.x  , cell.y  ,  0, 0); +    float f5 = f_i(f_b, cell.x-1, cell.y  ,  1, 0); +    float f6 = f_i(f_b, cell.x+1, cell.y+1, -1,-1); +    float f7 = f_i(f_b, cell.x  , cell.y+1,  0,-1); +    float f8 = f_i(f_b, cell.x-1, cell.y+1,  1,-1); + +    const float d = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8; + +    float2 v = (float2)( +        (f5 - f3 + f2 - f6 + f8 - f0) / d, +        (f1 - f7 + f2 - f6 - f8 + f0) / d +    ); + +    if ( m == 2 ) { +        v = (float2)(0.0f, 0.0f); +    } + +    const float dotv = dot(v,v); + +    f0 += $omega * (f_eq(w[0], d,v,-1, 1, dotv) - f0); +    f1 += $omega * (f_eq(w[1], d,v, 0, 1, dotv) - f1); +    f2 += $omega * (f_eq(w[2], d,v, 1, 1, dotv) - f2); +    f3 += $omega * (f_eq(w[3], d,v,-1, 0, dotv) - f3); +    f4 += $omega * (f_eq(w[4], d,v, 0, 0, dotv) - f4); +    f5 += $omega * (f_eq(w[5], d,v, 1, 0, dotv) - f5); +    f6 += $omega * (f_eq(w[6], d,v,-1,-1, dotv) - f6); +    f7 += $omega * (f_eq(w[7], d,v, 0,-1, dotv) - f7); +    f8 += $omega * (f_eq(w[8], d,v, 1,-1, dotv) - f8); + +    f_a[0*$nCells + gid] = f0; +    f_a[1*$nCells + gid] = f1; +    f_a[2*$nCells + gid] = f2; +    f_a[3*$nCells + gid] = f3; +    f_a[4*$nCells + gid] = f4; +    f_a[5*$nCells + gid] = f5; +    f_a[6*$nCells + gid] = f6; +    f_a[7*$nCells + gid] = f7; +    f_a[8*$nCells + gid] = f8; + +    moments[1*gid] = d; +    moments[2*gid] = v.x; +    moments[3*gid] = v.y; +}""" + +class D2Q9_BGK_Lattice: +    def idx(self, x, y): +        return y * self.nX + x; + +    def __init__(self, nX, nY): +        self.nX = nX +        self.nY = nY +        self.nCells = nX * nY +        self.tick = True + +        self.platform = cl.get_platforms()[0] +        self.context  = cl.Context(properties=[(cl.context_properties.PLATFORM, self.platform)]) +        self.queue = cl.CommandQueue(self.context) + +        self.np_pop_a = numpy.ndarray(shape=(9, self.nCells), dtype=numpy.float32) +        self.np_pop_b = numpy.ndarray(shape=(9, self.nCells), dtype=numpy.float32) + +        self.np_moments  = numpy.ndarray(shape=(3, self.nCells), dtype=numpy.float32) +        self.np_material = numpy.ndarray(shape=(self.nCells, 1), dtype=numpy.int32) + +        self.setup_geometry() + +        self.equilibrilize() +        self.setup_anomaly() + +        self.cl_pop_a = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_pop_a) +        self.cl_pop_b = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_pop_b) + +        self.cl_material = cl.Buffer(self.context, mf.READ_ONLY  | mf.USE_HOST_PTR, hostbuf=self.np_material) +        self.cl_moments  = cl.Buffer(self.context, mf.READ_WRITE | mf.USE_HOST_PTR, hostbuf=self.np_moments) + +        self.build_kernel() + +    def setup_geometry(self): +        self.np_material[:] = 0 +        for x in range(1,self.nX-1): +            for y in range(1,self.nY-1): +                if x == 1 or y == 1 or x == self.nX-2 or y == self.nY-2: +                    self.np_material[self.idx(x,y)] = 2 +                else: +                    self.np_material[self.idx(x,y)] = 1 + +    def equilibrilize(self): +        self.np_pop_a[(0,2,6,8),:] = 1./36. +        self.np_pop_a[(1,3,5,7),:] = 1./9. +        self.np_pop_a[4,:] = 4./9. + +        self.np_pop_b[(0,2,6,8),:] = 1./36. +        self.np_pop_b[(1,3,5,7),:] = 1./9. +        self.np_pop_b[4,:] = 4./9. + +    def setup_anomaly(self): +        bubbles = [ [        self.nX//4,        self.nY//4], +                    [        self.nX//4,self.nY-self.nY//4], +                    [self.nX-self.nX//4,        self.nY//4], +                    [self.nX-self.nX//4,self.nY-self.nY//4] ] + +        for x in range(0,self.nX-1): +            for y in range(0,self.nY-1): +                for [a,b] in bubbles: +                    if numpy.sqrt((x-a)*(x-a)+(y-b)*(y-b)) < self.nX//10: +                        self.np_pop_a[:,self.idx(x,y)] = 1./24. +                        self.np_pop_b[:,self.idx(x,y)] = 1./24. + +    def build_kernel(self): +        self.program = cl.Program(self.context, Template(kernel).substitute({ +            'nX' : self.nX, +            'nY' : self.nY, +            'nCells': self.nCells, +            'omega': 1.0/0.8 +        })).build() #'-cl-single-precision-constant -cl-fast-relaxed-math') + +    def evolve(self): +        if self.tick: +            self.tick = False +            self.program.collide_and_stream(self.queue, (self.nX,self.nY), (64,1), self.cl_pop_a, self.cl_pop_b, self.cl_moments, self.cl_material) +        else: +            self.tick = True +            self.program.collide_and_stream(self.queue, (self.nX,self.nY), (64,1), self.cl_pop_b, self.cl_pop_a, self.cl_moments, self.cl_material) + +    def sync(self): +        self.queue.finish() + +    def show(self, i): +        cl.enqueue_copy(LBM.queue, LBM.np_moments, LBM.cl_moments).wait(); + +        density = numpy.ndarray(shape=(self.nX-2, self.nY-2)) +        for y in range(1,self.nY-1): +            for x in range(1,self.nX-1): +                density[x-1,y-1] = self.np_moments[0,self.idx(x,y)] + +        plt.imshow(density, vmin=0.2, vmax=2.0, cmap=plt.get_cmap("seismic")) +        plt.savefig("result/density_" + str(i) + ".png") + + +def MLUPS(cells, steps, time): +    return cells * steps / time * 1e-6 + +nUpdates = 1000 +nStat = 100 + +print("Initializing simulation...\n") + +LBM = D2Q9_BGK_Lattice(1024, 1024) + +print("Starting simulation using %d cells...\n" % LBM.nCells) + +lastStat = time.time() + +for i in range(1,nUpdates+1): +    if i % nStat == 0: +        LBM.sync() +        #LBM.show(i) +        print("i = %4d; %3.0f MLUPS" % (i, MLUPS(LBM.nCells, nStat, time.time() - lastStat))) +        lastStat = time.time() + +    LBM.evolve() + +LBM.show(nUpdates) | 
