1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
import numpy
from string import Template
from simulation import Lattice, Geometry
from utility.particles import Particles
from symbolic.generator import LBM
import symbolic.D2Q9 as D2Q9
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GL import shaders
from pyrr import matrix44
lattice_x = 480
lattice_y = 300
updates_per_frame = 80
inflow = 0.01
relaxation_time = 0.52
def circle(cx, cy, r):
return lambda x, y: (x - cx)**2 + (y - cy)**2 < r*r
def get_channel_material_map(geometry):
return [
(lambda x, y: x > 0 and x < geometry.size_x-1 and y > 0 and y < geometry.size_y-1, 1), # bulk fluid
(lambda x, y: x == 1, 3), # inflow
(lambda x, y: x == geometry.size_x-2, 4), # outflow
(lambda x, y: y == 1, 2), # bottom
(lambda x, y: y == geometry.size_y-2, 2), # top
(lambda x, y: x > geometry.size_x//20 and x < 2*geometry.size_x//20 and y < 4*geometry.size_y//9, 2),
(lambda x, y: x > geometry.size_x//20 and x < 2*geometry.size_x//20 and y > 5*geometry.size_y//9, 2),
(circle(geometry.size_x//4, geometry.size_y//2, 50), 2),
(circle(geometry.size_x//4-25, geometry.size_y//2, 50), 1),
(lambda x, y: x == 0 or x == geometry.size_x-1 or y == 0 or y == geometry.size_y-1, 0) # ghost cells
]
boundary = Template("""
if ( m == 2 ) {
u_0 = 0.0;
u_1 = 0.0;
}
if ( m == 3 ) {
u_0 = min(time/10000.0 * $inflow, $inflow);
u_1 = 0.0;
}
if ( m == 4 ) {
rho = 1.0;
}
""").substitute({
'inflow': inflow
})
def get_projection(width, height):
world_width = lattice_x
world_height = world_width / width * height
projection = matrix44.create_orthogonal_projection(-world_width/2, world_width/2, -world_height/2, world_height/2, -1, 1)
translation = matrix44.create_from_translation([-lattice_x/2, -lattice_y/2, 0])
point_size = width / world_width
return numpy.matmul(translation, projection), point_size
def glut_window(fullscreen = False):
glutInit(sys.argv)
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH)
if fullscreen:
window = glutEnterGameMode()
else:
glutInitWindowSize(800, 600)
glutInitWindowPosition(0, 0)
window = glutCreateWindow("LBM")
return window
lbm = LBM(D2Q9)
window = glut_window(fullscreen = False)
vertex_shader = shaders.compileShader(Template("""
#version 430
layout (location=0) in vec4 CellMoments;
out vec3 color;
uniform mat4 projection;
vec3 blueRedPalette(float x) {
return mix(
vec3(0.0, 0.0, 1.0),
vec3(1.0, 0.0, 0.0),
x
);
}
vec2 fluidVertexAtIndex(uint i) {
const float y = floor(float(i) / $size_x);
return vec2(
i - $size_x*y,
y
);
}
void main() {
const vec2 idx = fluidVertexAtIndex(gl_VertexID);
gl_Position = projection * vec4(
idx.x,
idx.y,
0.,
1.
);
if (CellMoments[3] > 0.0) {
color = blueRedPalette(CellMoments[3] / 0.2);
} else {
color = vec3(0.4,0.4,0.4);
}
}""").substitute({
'size_x': lattice_x,
'inflow': inflow
}), GL_VERTEX_SHADER)
fragment_shader = shaders.compileShader("""
#version 430
in vec3 color;
void main(){
gl_FragColor = vec4(color.xyz, 0.0);
}""", GL_FRAGMENT_SHADER)
particle_shader = shaders.compileShader(Template("""
#version 430
layout (location=0) in vec4 Particles;
out vec3 color;
uniform mat4 projection;
void main() {
gl_Position = projection * vec4(
Particles[0],
Particles[1],
0.,
1.
);
color = vec3(1.0);
}""").substitute({}), GL_VERTEX_SHADER)
shader_program = shaders.compileProgram(vertex_shader, fragment_shader)
particle_program = shaders.compileProgram(particle_shader, fragment_shader)
projection_id = shaders.glGetUniformLocation(shader_program, 'projection')
lattice = Lattice(
descriptor = D2Q9,
geometry = Geometry(lattice_x, lattice_y),
moments = lbm.moments(optimize = False),
collide = lbm.bgk(f_eq = lbm.equilibrium(), tau = relaxation_time),
boundary_src = boundary,
opengl = True
)
lattice.apply_material_map(
get_channel_material_map(lattice.geometry))
lattice.sync_material()
particles = Particles(
lattice.context,
lattice.queue,
lattice.memory.float_type,
numpy.mgrid[
lattice.geometry.size_x//20:2*lattice.geometry.size_x//20:100j,
4*lattice.geometry.size_y//9:5*lattice.geometry.size_y//9:100000/100j
].reshape(2,-1).T)
def on_display():
for i in range(0,updates_per_frame):
lattice.evolve()
lattice.collect_gl_moments()
for i in range(0,updates_per_frame):
lattice.update_gl_particles(particles, aging = False)
lattice.sync()
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
lattice.memory.gl_moments.bind()
glEnableClientState(GL_VERTEX_ARRAY)
shaders.glUseProgram(shader_program)
glUniformMatrix4fv(projection_id, 1, False, numpy.ascontiguousarray(projection))
glVertexPointer(4, GL_FLOAT, 0, lattice.memory.gl_moments)
glPointSize(point_size)
glDrawArrays(GL_POINTS, 0, lattice.geometry.volume)
particles.gl_particles.bind()
glEnableClientState(GL_VERTEX_ARRAY)
shaders.glUseProgram(particle_program)
glUniformMatrix4fv(projection_id, 1, False, numpy.asfortranarray(projection))
glVertexPointer(4, GL_FLOAT, 0, particles.gl_particles)
glPointSize(point_size)
glDrawArrays(GL_POINTS, 0, particles.count)
glDisableClientState(GL_VERTEX_ARRAY)
glutSwapBuffers()
def on_reshape(width, height):
global projection, point_size
glViewport(0,0,width,height)
projection, point_size = get_projection(width, height)
def on_timer(t):
glutTimerFunc(t, on_timer, t)
glutPostRedisplay()
glutDisplayFunc(on_display)
glutReshapeFunc(on_reshape)
glutTimerFunc(10, on_timer, 10)
glutMainLoop()
|