1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
import pyopencl as cl
mf = cl.mem_flags
import numpy
from utility.ndindex import ndindex
import sympy
from mako.template import Template
from pathlib import Path
from pyopencl.tools import get_gl_sharing_context_properties
import OpenGL.GL as gl
from OpenGL.arrays import vbo
class Geometry:
def __init__(self, size_x, size_y, size_z = 1):
self.size_x = size_x
self.size_y = size_y
self.size_z = size_z
self.volume = size_x * size_y * size_z
def inner_cells(self):
for idx in numpy.ndindex(self.inner_size()):
yield tuple(map(lambda i: i + 1, idx))
def size(self):
if self.size_z == 1:
return (self.size_x, self.size_y)
else:
return (self.size_x, self.size_y, self.size_z)
def inner_size(self):
if self.size_z == 1:
return (self.size_x-2, self.size_y-2)
else:
return (self.size_x-2, self.size_y-2, self.size_z-2)
def pad(n, m):
return (n // m + min(1,n % m)) * m
class Grid:
def __init__(self, geometry, padding = None):
if padding == None:
self.size_x = geometry.size_x
self.size_y = geometry.size_y
self.size_z = geometry.size_z
else:
self.size_x = pad(geometry.size_x, padding[0])
self.size_y = pad(geometry.size_y, padding[1])
if geometry.size_z == 1:
self.size_z = geometry.size_z
else:
self.size_z = pad(geometry.size_z, padding[2])
self.volume = self.size_x * self.size_y * self.size_z
def size(self):
if self.size_z == 1:
return (self.size_x, self.size_y)
else:
return (self.size_x, self.size_y, self.size_z)
class Memory:
def __init__(self, descriptor, grid, context, float_type, align, opengl):
self.descriptor = descriptor
self.context = context
self.float_type = float_type
if align:
self.size_x = pad(grid.size_x, {
numpy.float32: 32,
numpy.float64: 16
}.get(float_type, None))
else:
self.size_x = grid.size_x
self.size_y = grid.size_y
self.size_z = grid.size_z
self.volume = self.size_x * self.size_y * self.size_z
self.pop_size = descriptor.q * self.volume * self.float_type(0).nbytes
self.moments_size = (descriptor.d+1) * self.volume * self.float_type(0).nbytes
self.cl_pop_a = cl.Buffer(self.context, mf.READ_WRITE, size=self.pop_size)
self.cl_pop_b = cl.Buffer(self.context, mf.READ_WRITE, size=self.pop_size)
if opengl:
self.np_moments = numpy.ndarray(shape=(self.volume, 4), dtype=self.float_type)
self.gl_moments = vbo.VBO(data=self.np_moments, usage=gl.GL_DYNAMIC_DRAW, target=gl.GL_ARRAY_BUFFER)
self.gl_moments.bind()
self.cl_gl_moments = cl.GLBuffer(self.context, mf.READ_WRITE, int(self.gl_moments))
else:
self.cl_moments = cl.Buffer(self.context, mf.WRITE_ONLY, size=self.moments_size)
self.cl_material = cl.Buffer(self.context, mf.READ_ONLY, size=self.volume * numpy.int32(0).nbytes)
def gid(self, x, y, z = 0):
return z * (self.size_x*self.size_y) + y * self.size_x + x;
def size(self):
if self.size_z == 1:
return (self.size_x, self.size_y)
else:
return (self.size_x, self.size_y, self.size_z)
def cells(self):
return ndindex(self.size(), order='F')
class Lattice:
def __init__(self,
descriptor, geometry, moments, collide,
pop_eq_src = '', boundary_src = '',
platform = 0, precision = 'single', layout = None, padding = None, align = True, opengl = False
):
self.descriptor = descriptor
self.geometry = geometry
self.grid = Grid(self.geometry, padding)
self.time = 0
self.float_type = {
'single': (numpy.float32, 'float'),
'double': (numpy.float64, 'double'),
}.get(precision, None)
self.platform = cl.get_platforms()[platform]
if opengl:
self.context = cl.Context(
properties=[(cl.context_properties.PLATFORM, self.platform)] + get_gl_sharing_context_properties())
else:
self.context = cl.Context(
properties=[(cl.context_properties.PLATFORM, self.platform)])
self.queue = cl.CommandQueue(self.context)
self.memory = Memory(self.descriptor, self.grid, self.context, self.float_type[0], align, opengl)
self.tick = False
self.moments = moments
self.collide = collide
self.pop_eq_src = pop_eq_src
self.boundary_src = boundary_src
self.layout = layout
self.compiler_args = {
'single': '-cl-single-precision-constant -cl-fast-relaxed-math',
'double': '-cl-fast-relaxed-math'
}.get(precision, None)
self.build_kernel()
self.program.equilibrilize(
self.queue, self.grid.size(), self.layout, self.memory.cl_pop_a, self.memory.cl_pop_b).wait()
self.material = numpy.ndarray(shape=(self.memory.volume, 1), dtype=numpy.int32)
def apply_material_map(self, material_map):
for indicator, material in material_map:
self.material[[indicator(*idx) for idx in self.memory.cells()]] = material
def sync_material(self):
cl.enqueue_copy(self.queue, self.memory.cl_material, self.material).wait();
def build_kernel(self):
program_src = Template(filename = str(Path(__file__).parent/'template/kernel.mako')).render(
descriptor = self.descriptor,
geometry = self.geometry,
memory = self.memory,
moments_subexpr = self.moments[0],
moments_assignment = self.moments[1],
collide_subexpr = self.collide[0],
collide_assignment = self.collide[1],
float_type = self.float_type[1],
pop_eq_src = Template(self.pop_eq_src).render(
descriptor = self.descriptor,
geometry = self.geometry,
memory = self.memory,
float_type = self.float_type[1],
),
boundary_src = Template(self.boundary_src).render(
descriptor = self.descriptor,
geometry = self.geometry,
memory = self.memory,
float_type = self.float_type[1],
),
ccode = sympy.ccode
)
self.program = cl.Program(self.context, program_src).build(self.compiler_args)
def evolve(self):
self.time += 1
if self.tick:
self.tick = False
self.program.collide_and_stream(
self.queue, self.grid.size(), self.layout, self.memory.cl_pop_a, self.memory.cl_pop_b, self.memory.cl_material, numpy.uint32(self.time))
else:
self.tick = True
self.program.collide_and_stream(
self.queue, self.grid.size(), self.layout, self.memory.cl_pop_b, self.memory.cl_pop_a, self.memory.cl_material, numpy.uint32(self.time))
def sync(self):
self.queue.finish()
def get_moments(self):
moments = numpy.ndarray(shape=(self.descriptor.d+1, self.memory.volume), dtype=self.float_type[0])
if self.tick:
self.program.collect_moments(
self.queue, self.grid.size(), self.layout, self.memory.cl_pop_b, self.memory.cl_moments)
else:
self.program.collect_moments(
self.queue, self.grid.size(), self.layout, self.memory.cl_pop_a, self.memory.cl_moments)
cl.enqueue_copy(self.queue, moments, self.memory.cl_moments).wait();
return moments
def collect_gl_moments(self):
cl.enqueue_acquire_gl_objects(self.queue, [self.memory.cl_gl_moments])
if self.tick:
self.program.collect_gl_moments(
self.queue, self.grid.size(), self.layout, self.memory.cl_pop_b, self.memory.cl_material, self.memory.cl_gl_moments)
else:
self.program.collect_gl_moments(
self.queue, self.grid.size(), self.layout, self.memory.cl_pop_a, self.memory.cl_material, self.memory.cl_gl_moments)
def update_gl_particles(self, particles, aging = False):
cl.enqueue_acquire_gl_objects(self.queue, [particles.
|