1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
<%
def gid():
return {
2: 'get_global_id(1)*%d + get_global_id(0)' % memory.size_x,
3: 'get_global_id(2)*%d + get_global_id(1)*%d + get_global_id(0)' % (memory.size_x*memory.size_y, memory.size_x)
}.get(descriptor.d)
def pop_offset(i):
return i * memory.volume
def moments_cell():
return {
2: '(int2)(get_global_id(0), get_global_id(1))',
3: '(int4)(get_global_id(0), get_global_id(1), get_global_id(2), 0)'
}.get(descriptor.d)
%>
__kernel void collect_gl_moments(__global __read_only ${float_type}* f,
__global __read_only int* material,
__global __write_only float4* moments)
{
const unsigned int gid = ${gid()};
__global __read_only ${float_type}* preshifted_f = f + gid;
% for i in range(0,descriptor.q):
const ${float_type} f_curr_${i} = preshifted_f[${pop_offset(i)}];
% endfor
% for i, expr in enumerate(moments_subexpr):
const ${float_type} ${expr[0]} = ${ccode(expr[1])};
% endfor
float4 data;
if (material[gid] == 1) {
% if descriptor.d == 2:
data.x = ${ccode(moments_assignment[0].rhs)};
data.y = ${ccode(moments_assignment[1].rhs)};
data.z = ${ccode(moments_assignment[2].rhs)};
data.w = sqrt(data.y*data.y + data.z*data.z);
% elif descriptor.d == 3:
data.x = ${ccode(moments_assignment[0].rhs)};
data.y = ${ccode(moments_assignment[1].rhs)};
data.z = ${ccode(moments_assignment[2].rhs)};
data.w = ${ccode(moments_assignment[3].rhs)};
% endif
} else {
data.x = 0.0;
data.y = 0.0;
data.z = 0.0;
data.w = -material[gid];
}
moments[gid] = data;
}
<%
def neighbor_offset(c_i):
return {
2: lambda: c_i[1]*memory.size_x + c_i[0],
3: lambda: c_i[2]*memory.size_x*memory.size_y + c_i[1]*memory.size_x + c_i[0]
}.get(descriptor.d)()
%>
__kernel void collect_gl_moments_to_texture(__global __read_only ${float_type}* f,
__global __read_only int* material,
% if descriptor.d == 2:
__write_only image2d_t moments)
% elif descriptor.d == 3:
__write_only image3d_t moments)
% endif
{
const unsigned int gid = ${gid()};
__global __read_only ${float_type}* preshifted_f = f + gid;
% for i in range(0,descriptor.q):
const ${float_type} f_curr_${i} = preshifted_f[${pop_offset(i)}];
% endfor
% for i, expr in enumerate(moments_subexpr):
const ${float_type} ${expr[0]} = ${ccode(expr[1])};
% endfor
float4 data;
if (material[gid] != 5) {
% if descriptor.d == 2:
data.x = ${ccode(moments_assignment[0].rhs)};
data.y = ${ccode(moments_assignment[1].rhs)};
data.z = ${ccode(moments_assignment[2].rhs)};
data.w = sqrt(data.y*data.y + data.z*data.z);
% elif descriptor.d == 3:
data.x = ${ccode(moments_assignment[0].rhs)};
data.y = ${ccode(moments_assignment[1].rhs)};
data.z = ${ccode(moments_assignment[2].rhs)};
data.w = ${ccode(moments_assignment[3].rhs)};
% endif
} else {
const int material_west = material[gid + ${neighbor_offset((-1,0,0))}];
const int material_east = material[gid + ${neighbor_offset((1,0,0))}];
const int material_north = material[gid + ${neighbor_offset((0,1,0))}];
const int material_south = material[gid + ${neighbor_offset((0,-1,0))}];
const int material_up = material[gid + ${neighbor_offset((0,0, 1))}];
const int material_down = material[gid + ${neighbor_offset((0,0,-1))}];
// recover surface normal approximation using surrounding materials
float3 n;
if (material_west != 5) { n.x = 1; }
if (material_east != 5) { n.x = -1; }
if (material_north != 5) { n.y = -1; }
if (material_south != 5) { n.y = 1; }
if (material_up != 5) { n.z = -1; }
if (material_down != 5) { n.z = 1; }
data.xyz = 0.5 + 0.5*n; // pack surface normal into texture
data.w = 1.0; // signal impermeable material to raytracer
}
write_imagef(moments, ${moments_cell()}, data);
}
|