aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAdrian Kummerlaender2018-12-20 20:31:31 +0100
committerAdrian Kummerlaender2018-12-20 20:31:31 +0100
commit77151351a406adb4f773f8163652e3c4e3cbd06b (patch)
tree76a263aef9eb6de9b486e3414580c48b49ce5448
parenta30a3fb1d55c3ef390e21f62429513d6544491dd (diff)
downloadblog_content-77151351a406adb4f773f8163652e3c4e3cbd06b.tar
blog_content-77151351a406adb4f773f8163652e3c4e3cbd06b.tar.gz
blog_content-77151351a406adb4f773f8163652e3c4e3cbd06b.tar.bz2
blog_content-77151351a406adb4f773f8163652e3c4e3cbd06b.tar.lz
blog_content-77151351a406adb4f773f8163652e3c4e3cbd06b.tar.xz
blog_content-77151351a406adb4f773f8163652e3c4e3cbd06b.tar.zst
blog_content-77151351a406adb4f773f8163652e3c4e3cbd06b.zip
Add videos to CFD article
-rw-r--r--articles/2018-12-22_fun_with_compute_shaders_and_fluid_dynamics.md21
1 files changed, 7 insertions, 14 deletions
diff --git a/articles/2018-12-22_fun_with_compute_shaders_and_fluid_dynamics.md b/articles/2018-12-22_fun_with_compute_shaders_and_fluid_dynamics.md
index 6c70270..bb0d6c7 100644
--- a/articles/2018-12-22_fun_with_compute_shaders_and_fluid_dynamics.md
+++ b/articles/2018-12-22_fun_with_compute_shaders_and_fluid_dynamics.md
@@ -1,16 +1,11 @@
# Fun with compute shaders and fluid dynamics
-## First for some theory…
-
-What we want (Navier-Stokes):
-
-$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho u) &= 0 \\ \partial_t u + (u \cdot \nabla) u &= -\frac{1}{\rho} \nabla p + 2\nu\nabla \cdot (\mathrm{S})\end{aligned}$$
-
-Pressure $p = c_s^2 \rho$
+<video controls="" preload="metadata" loop="true" poster="https://static.kummerlaender.eu/media/classical_explosion.poster.jpg"><source src="https://static.kummerlaender.eu/media/classical_explosion.teaser.mp4" type="video/mp4"/></video>
-Kinetic viscosity: $\nu = c_s^2 \tau$
+## First for some theory…
-Tensor: $\mathrm{S} = \frac{1}{2} (\nabla u + (\nabla u)^\top)$
+The behaviour of weakly compressible fluid flows -- i.e. non-supersonic flows where the compressibility of the flowing fluid plays a small but _non-central_ role -- is usually modelled by the weakly compressible Navier-Stokes equations which relate density $\rho$, pressure $p$, viscosity $\nu$ and speed $u$ to each other:
+$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho u) &= 0 \\ \partial_t u + (u \cdot \nabla) u &= -\frac{1}{\rho} \nabla p + 2\nu\nabla \cdot \left(\frac{1}{2} (\nabla u + (\nabla u)^\top)\right)\end{aligned}$$
What we use (Boltzmann equilibrium):
@@ -126,10 +121,8 @@ void main() {
## Visuals
-![Pleasing snapshot of an artfully amplified implosion](https://static.kummerlaender.eu/media/boltzstern_1.jpg)
-
-![Pleasing snapshot of an artfully amplified implosion](https://static.kummerlaender.eu/media/boltzstern_2.jpg)
-
-![Pleasing snapshot of an artfully amplified implosion](https://static.kummerlaender.eu/media/boltzstern_3.jpg)
+<video controls="" preload="metadata" loop="true" poster="https://static.kummerlaender.eu/media/boltzstern_1.jpg"><source src="https://static.kummerlaender.eu/media/boltzstern.mp4" type="video/mp4"/></video>
## Reaching down from the heavens
+
+<video controls="" preload="metadata" loop="true" poster="https://static.kummerlaender.eu/media/interactive_boltzmann_256.poster.jpg"><source src="https://static.kummerlaender.eu/media/interactive_boltzmann_256.mp4" type="video/mp4"/></video>