diff options
| author | Adrian Kummerlaender | 2020-01-10 18:10:35 +0100 | 
|---|---|---|
| committer | Adrian Kummerlaender | 2020-01-10 18:10:35 +0100 | 
| commit | 1d4b7059aa969875dbd4904c8a6980afdb39f647 (patch) | |
| tree | 19846fb70330bea61947d4aadd9fe9c577466e41 | |
| parent | 073fe4643e0616694a3d390da6d7dcfd3af120f3 (diff) | |
| download | firmament-1d4b7059aa969875dbd4904c8a6980afdb39f647.tar firmament-1d4b7059aa969875dbd4904c8a6980afdb39f647.tar.gz firmament-1d4b7059aa969875dbd4904c8a6980afdb39f647.tar.bz2 firmament-1d4b7059aa969875dbd4904c8a6980afdb39f647.tar.lz firmament-1d4b7059aa969875dbd4904c8a6980afdb39f647.tar.xz firmament-1d4b7059aa969875dbd4904c8a6980afdb39f647.tar.zst firmament-1d4b7059aa969875dbd4904c8a6980afdb39f647.zip  | |
Implement model for local sun direction
`local_sunrise.py` renders the sky for a given time and place on earth.
| -rw-r--r-- | local_sunrise.py | 67 | ||||
| -rw-r--r-- | sun.py | 32 | 
2 files changed, 99 insertions, 0 deletions
diff --git a/local_sunrise.py b/local_sunrise.py new file mode 100644 index 0000000..58ec73d --- /dev/null +++ b/local_sunrise.py @@ -0,0 +1,67 @@ +import numpy as np +import matplotlib.pyplot as plt +from string import Template + +import pyopencl as cl +from pyopencl.cltypes import make_double3 + +mf = cl.mem_flags + +from planets import earth + +from sun import sun_direction +from datetime import datetime + +config = { +    'size_x': 1920//4, +    'size_y': 1080//4, + +    'ray_samples'  : 16, +    'light_samples': 8, + +    'exposure': 2.0, +    'zoom':     1.0, + +    'eye_pos': np.array([0, 0, 1.0001]), +    'eye_dir': np.array([0, 1, 0]), + +    'date': (2020, 1, 10), +    'latitude': 49.01, +    'longitude': 8.4 +} + +time_range = (5, 20, 1) + +cl_platform = cl.get_platforms()[0] +cl_context = cl.Context(properties=[(cl.context_properties.PLATFORM, cl_platform)]) +cl_queue   = cl.CommandQueue(cl_context) + +cl_picture = cl.Buffer(cl_context, mf.WRITE_ONLY, size=config['size_x']*config['size_y']*3*np.float64(0).nbytes) +program = None + +with open('raymarch.cl') as f: +    program = cl.Program(cl_context, Template(f.read()).substitute( +        {**config, **earth} +    )).build() + +for time in np.arange(*time_range): +    pit = datetime(*config['date'], int(np.floor(time)), int((time-np.floor(time))*60), 0) +    sun_dir = sun_direction(config['latitude'], config['longitude'], pit, 1.0) + +    sun = make_double3( +        np.sin(sun_dir[1])*np.cos(sun_dir[0]), +        np.cos(sun_dir[1])*np.cos(sun_dir[0]), +        np.sin(sun_dir[0]) +    ) +    print(sun_dir) + +    program.render( +        cl_queue, (config['size_x'], config['size_y']), None, cl_picture, +        make_double3(*(config['eye_pos'] * earth['earth_radius'])), +        make_double3(*(config['eye_dir'] * earth['earth_radius'])), +        sun) + +    np_picture = np.ndarray(shape=(config['size_y'], config['size_x'], 3), dtype=np.float64) +    cl.enqueue_copy(cl_queue, np_picture, cl_picture).wait(); + +    plt.imsave("sky_%05.1f.png" % time, np_picture, origin='lower') @@ -0,0 +1,32 @@ +import numpy as np +from datetime import datetime + +## Sun direction depending on time and place +# As described in Appendix D of "ME 4131 Thermal Environmental Engineering Laboratory Manual" + +def sun_declination(time): +    day_of_year = time.timetuple().tm_yday +    return 23.45 * np.sin(np.radians((360/365)*(284+day_of_year))) + +def equation_of_time(time): +    day_of_year = time.timetuple().tm_yday +    b = np.radians(360*(day_of_year-81)/364) +    return 0.165*np.sin(2*b) - 0.126*np.cos(b) - 0.025*np.sin(b) + +def sun_direction(lat, lon, time, time_diff, summertime_shift = 0): +    lon_std = time_diff * 15 +    clock_time       = time.hour + time.minute/60 +    local_solar_time = clock_time + (1/15)*(lon - lon_std) + equation_of_time(time) - summertime_shift +    hour_angle = 15*(local_solar_time - 12) + +    l = np.radians(lat) +    h = np.radians(hour_angle) +    d = np.radians(sun_declination(time)) + +    altitude = np.arcsin(np.cos(l) * np.cos(h) * np.cos(d) + np.sin(l) * np.sin(d)) +    azimuth  = np.arccos((np.cos(d) * np.sin(l) * np.cos(h) - np.sin(d) * np.cos(l)) / np.cos(altitude)) + +    if (time.timetuple().tm_hour <= 12): +        return (altitude, -azimuth) +    else: +        return (altitude,  azimuth)  | 
