1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/* This file is part of the OpenLB library
*
* Copyright (C) 2012, 2015 Mathias J. Krause, Vojtech Cvrcekt, Davide Dapelo
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* Porous-particle BGK Dynamics with adjusted omega
* and Smagorinsky turbulence model -- generic implementation.
* Strain rate similar to "J.Boyd, J. Buick and S.Green: A second-order accurate lattice Boltzmann non-Newtonian flow model"
* Power Law similar to "Huidan Yu, Sharath S. Girimaji, Li-Shi Luo - DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method"
*/
#ifndef SMAGORINSKY_POWER_LAW_BGK_DYNAMICS_HH
#define SMAGORINSKY_POWER_LAW_BGK_DYNAMICS_HH
#include "../dynamics/powerLawBGKdynamics.h"
#include "SmagorinskyPowerLawBGKdynamics.h"
#include "math.h"
namespace olb {
////////////////////// Class SmagorinskyPowerLawBGKdynamics //////////////////////////
/** \param vs2_ speed of sound
* \param momenta_ a Momenta object to know how to compute velocity momenta
* \param momenta_ a Momenta object to know how to compute velocity momenta
*/
template<typename T, typename DESCRIPTOR>
SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::SmagorinskyPowerLawBGKdynamics (
T omega, Momenta<T,DESCRIPTOR>& momenta, T m, T n , T nuMin, T nuMax, T smagoConst)
: SmagorinskyBGKdynamics<T,DESCRIPTOR>(omega, momenta, smagoConst),
PowerLawDynamics<T,DESCRIPTOR>(m, n, nuMin, nuMax)
{ }
template<typename T, typename DESCRIPTOR>
void SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::collide (
Cell<T,DESCRIPTOR>& cell,
LatticeStatistics<T>& statistics )
{
T rho, u[DESCRIPTOR::d], pi[util::TensorVal<DESCRIPTOR >::n];
this->_momenta.computeAllMomenta(cell, rho, u, pi);
// Computation of the power-law omega.
// An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
T oldOmega = cell.template getFieldPointer<descriptors::OMEGA>()[0];
T intOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
T newOmega = computeEffectiveOmega(cell, intOmega); // turbulent omega
T uSqr = lbHelpers<T,DESCRIPTOR>::bgkCollision(cell, rho, u, newOmega);
cell.template getFieldPointer<descriptors::OMEGA>()[0] = intOmega; // updating omega
statistics.incrementStats(rho, uSqr);
}
template<typename T, typename DESCRIPTOR>
T SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::computeEffectiveOmega(Cell<T,DESCRIPTOR>& cell, T omega0)
{
T rho = this->_momenta.computeRho(cell);
T PiNeqNorm = sqrt(PiNeqNormSqr(cell));
/// Molecular realaxation time
T tau_mol = 1. /omega0;
/// Turbulent realaxation time
T tau_turb = 0.5*(sqrt(tau_mol*tau_mol + this->getPreFactor()/rho*PiNeqNorm) - tau_mol);
/// Effective realaxation time
T tau_eff = tau_mol+tau_turb;
T omega_new= 1./tau_eff;
return omega_new;
}
template<typename T, typename DESCRIPTOR>
T SmagorinskyPowerLawBGKdynamics<T,DESCRIPTOR>::PiNeqNormSqr(Cell<T,DESCRIPTOR>& cell )
{
return lbHelpers<T,DESCRIPTOR>::computePiNeqNormSqr(cell);
}
////////////////////// Class SmagorinskyPowerLawForcedBGKdynamics //////////////////////////
/** \param vs2_ speed of sound
* \param momenta_ a Momenta object to know how to compute velocity momenta
* \param momenta_ a Momenta object to know how to compute velocity momenta
*/
template<typename T, typename DESCRIPTOR>
SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::SmagorinskyPowerLawForcedBGKdynamics (
T omega, Momenta<T,DESCRIPTOR>& momenta, T m, T n , T nuMin, T nuMax, T smagoConst)
: SmagorinskyForcedBGKdynamics<T,DESCRIPTOR>(omega, momenta, smagoConst),
PowerLawDynamics<T,DESCRIPTOR>(m, n, nuMin, nuMax)
{ }
template<typename T, typename DESCRIPTOR>
void SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::collide (
Cell<T,DESCRIPTOR>& cell,
LatticeStatistics<T>& statistics )
{
T rho, u[DESCRIPTOR::d], pi[util::TensorVal<DESCRIPTOR >::n];
this->_momenta.computeAllMomenta(cell, rho, u, pi);
// Computation of the power-law omega.
// An external is used in place of BGKdynamics::_omega to keep generality and flexibility.
T oldOmega = cell.template getFieldPointer<descriptors::OMEGA>()[0];
T intOmega = this->computeOmegaPL(cell, oldOmega, rho, pi);
T newOmega = computeEffectiveOmega(cell, intOmega); // turbulent omega
T* force = cell.template getFieldPointer<descriptors::FORCE>();
for (int iVel=0; iVel<DESCRIPTOR::d; ++iVel) {
u[iVel] += force[iVel] / (T)2.;
}
T uSqr = lbHelpers<T,DESCRIPTOR>::bgkCollision(cell, rho, u, newOmega);
cell.template getFieldPointer<descriptors::OMEGA>()[0] = intOmega; // updating omega
lbHelpers<T,DESCRIPTOR>::addExternalForce(cell, u, newOmega, rho);
statistics.incrementStats(rho, uSqr);
}
template<typename T, typename DESCRIPTOR>
T SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::computeEffectiveOmega(Cell<T,DESCRIPTOR>& cell, T omega0)
{
T rho = this->_momenta.computeRho(cell);
T PiNeqNorm = sqrt(PiNeqNormSqr(cell));
/// Molecular realaxation time
T tau_mol = 1. /omega0;
/// Turbulent realaxation time
T tau_turb = 0.5*(sqrt(tau_mol*tau_mol + this->getPreFactor()/rho*PiNeqNorm) - tau_mol);
/// Effective realaxation time
T tau_eff = tau_mol+tau_turb;
T omega_new= 1./tau_eff;
return omega_new;
}
template<typename T, typename DESCRIPTOR>
T SmagorinskyPowerLawForcedBGKdynamics<T,DESCRIPTOR>::PiNeqNormSqr(Cell<T,DESCRIPTOR>& cell )
{
return lbHelpers<T,DESCRIPTOR>::computeForcedPiNeqNormSqr(cell);
}
}
#endif
|