1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/*
* Copyright (C) 2015 Marie-Luise Maier, Mathias J. Krause, Sascha Janz
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
* <http://www.openlb.net/>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** Alberto Di Renzo, Francesco Paolo Di Maio:
* "Comparison of contact-force models for the simulation of collisions in
* DEM-based granular ow codes",
* Chemical Engineering Science 59 (2004) 525 - 541
*/
#ifndef HERTZMINDLINDERESIEWICZ3D_HH
#define HERTZMINDLINDERESIEWICZ3D_HH
#include <cmath>
#include "hertzMindlinDeresiewicz3D.h"
namespace olb {
template<typename T, template<typename U> class PARTICLETYPE, typename DESCRIPTOR>
HertzMindlinDeresiewicz3D<T, PARTICLETYPE, DESCRIPTOR>::HertzMindlinDeresiewicz3D(
T G1, T G2, T v1, T v2, T scale1, T scale2, bool validationKruggelEmden) :
Force3D<T, PARTICLETYPE>(), _G1(G1), _G2(G2), _v1(v1), _v2(v2), _scale1(
scale1), _scale2(scale2), _validationKruggelEmden(validationKruggelEmden)
{
// E-Modul Particle
E1 = 2 * (1 + _v1) * _G1;
E2 = 2 * (1 + _v2) * _G2;
// equivalent combined E-Modul
eE = (1 - pow(_v1, 2)) / E1 + (1 - pow(_v2, 2)) / E2;
eE = 1 / eE;
// equivalent combined E-Modul
eG = (2.0 - _v1) / _G1 + (2 - _v2) / _G2;
eG = 1. / eG;
}
template<typename T, template<typename U> class PARTICLETYPE, typename DESCRIPTOR>
void HertzMindlinDeresiewicz3D<T, PARTICLETYPE, DESCRIPTOR>::applyForce(
typename std::deque<PARTICLETYPE<T> >::iterator p, int pInt,
ParticleSystem3D<T, PARTICLETYPE>& pSys)
{
T force[3] = {T(), T(), T()};
computeForce(p, pInt, pSys, force);
}
template<typename T, template<typename U> class PARTICLETYPE, typename DESCRIPTOR>
void HertzMindlinDeresiewicz3D<T, PARTICLETYPE, DESCRIPTOR>::computeForce(
typename std::deque<PARTICLETYPE<T> >::iterator p, int pInt,
ParticleSystem3D<T, PARTICLETYPE>& pSys, T force[3])
{
std::vector<std::pair<size_t, T>> ret_matches;
// kind of contactDetection has to be chosen in application
pSys.getContactDetection()->getMatches(pInt, ret_matches);
PARTICLETYPE<T>* p2 = NULL;
// iterator walks through number of neighbored particles = ret_matches
for (const auto& it : ret_matches) {
if (!util::nearZero(it.second)) {
p2 = &pSys[it.first];
// overlap
T delta = (p2->getRad() + p->getRad()) - sqrt(it.second);
// equivalent mass
T M = p->getMass() * p2->getMass() / (p->getMass() + p2->getMass());
// equivalent radius
T R = p->getRad() * p2->getRad() / (p->getRad() + p2->getRad());
// relative velocity
std::vector < T > _velR(3, T());
_velR[0] = -(p2->getVel()[0] - p->getVel()[0]);
_velR[1] = -(p2->getVel()[1] - p->getVel()[1]);
_velR[2] = -(p2->getVel()[2] - p->getVel()[2]);
std::vector < T > _d(3, T());
std::vector < T > _normal(3, T());
//_d: vector from particle1 to particle2
_d[0] = p2->getPos()[0] - p->getPos()[0];
_d[1] = p2->getPos()[1] - p->getPos()[1];
_d[2] = p2->getPos()[2] - p->getPos()[2];
if ( !util::nearZero(util::norm(_d)) ) {
_normal = util::normalize(_d);
}
else {
return;
}
Vector<T, 3> d_(_d);
Vector<T, 3> velR_(_velR);
T dot = velR_[0] * _normal[0] + velR_[1] * _normal[1] + velR_[2] * _normal[2];
// normal part of relative velocity
// normal relative to surface of particles at contact point
std::vector < T > _velN(3, T());
_velN[0] = dot * _normal[0];
_velN[1] = dot * _normal[1];
_velN[2] = dot * _normal[2];
// tangential part of relative velocity
// tangential relative to surface of particles at contact point
std::vector < T > _velT(3, T());
_velT[0] = _velR[0] - _velN[0];
_velT[1] = _velR[1] - _velN[1];
_velT[2] = _velR[2] - _velN[2];
if (delta > 0.) {
// Force normal
// spring constant in normal direction
// (Alberto Di Renzo, Francesco Paolo Di Maio, Chemical Engineering Science 59 (2004) 525 - 541)
// constant kn from H. Kruggel-Endem
T kn = 4 / 3. * sqrt(R) * eE;
if (_validationKruggelEmden) {
kn = 7.35e9; // to compare to Kruggel-Emden
}
// part of mechanical force of spring in normal direction
// Hertz Contact (P. A. Langston, Powder Technology 85 (1995))
std::vector < T > Fs_n(3, T());
Fs_n[0] = -kn * pow(delta, 1.5) * _normal[0];
Fs_n[1] = -kn * pow(delta, 1.5) * _normal[1];
Fs_n[2] = -kn * pow(delta, 1.5) * _normal[2];
// part of mechanical force of damper in normal direction
// damped linear spring (Cundall, Strack 1979)
// (K.W. Chu, A.B. Yu, Powder Technology 179 (2008) 104 – 114)
// damper constant in normal direction
// constant eta_n from H. Kruggel-Endem
T eta_n = 0.3 * sqrt(4.5 * M * sqrt(delta) * kn);
if (_validationKruggelEmden) {
eta_n = 1.96e5; // to compare to Kruggel-Emden
}
std::vector < T > Fd_n(3, T());
Fd_n[0] = -eta_n * _velN[0] * sqrt(delta);
Fd_n[1] = -eta_n * _velN[1] * sqrt(delta);
Fd_n[2] = -eta_n * _velN[2] * sqrt(delta);
std::vector < T > F_n(3, T());
F_n[0] = Fs_n[0] + Fd_n[0];
F_n[1] = Fs_n[1] + Fd_n[1];
F_n[2] = Fs_n[2] + Fd_n[2];
// Force tangential
// spring constant in tangential direction
// (N.G. Deen, Chemical Engineering Science 62 (2007) 28 - 44)
T kt = 2 * sqrt(2 * R) * _G1 / (2 - _v1) * pow(delta, 0.5);
// damper constant in normal direction
T eta_t = 2 * sqrt(2. / 7. * M * kt);
// part of mechanical force of damper in tangential direction
std::vector < T > F_t(3, T());
F_t[0] = -eta_t * _velT[0];
F_t[1] = -eta_t * _velT[1];
F_t[2] = -eta_t * _velT[2];
// entire force
// factor _scale to prevent instability
force[0] = _scale1 * F_n[0] + _scale2 * F_t[0];
force[1] = _scale1 * F_n[1] + _scale2 * F_t[1];
force[2] = _scale1 * F_n[2] + _scale2 * F_t[2];
p->getForce()[0] += force[0] * 0.5 ;
p->getForce()[1] += force[1] * 0.5 ;
p->getForce()[2] += force[2] * 0.5 ;
p2->getForce()[0] -= force[0] * 0.5 ;
p2->getForce()[1] -= force[1] * 0.5 ;
p2->getForce()[
|