aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAdrian Kummerlaender2018-02-12 13:23:22 +0100
committerAdrian Kummerlaender2018-02-12 13:23:22 +0100
commit94e1f512c065b180ad631d9b85f3d4b648ef5748 (patch)
tree9ebdd4798200366d8cdfcb2807cd0d521419b21f
parent3d535b65210c733c5cb816dc0020ec47c736123b (diff)
downloadmath_reference_sheets-94e1f512c065b180ad631d9b85f3d4b648ef5748.tar
math_reference_sheets-94e1f512c065b180ad631d9b85f3d4b648ef5748.tar.gz
math_reference_sheets-94e1f512c065b180ad631d9b85f3d4b648ef5748.tar.bz2
math_reference_sheets-94e1f512c065b180ad631d9b85f3d4b648ef5748.tar.lz
math_reference_sheets-94e1f512c065b180ad631d9b85f3d4b648ef5748.tar.xz
math_reference_sheets-94e1f512c065b180ad631d9b85f3d4b648ef5748.tar.zst
math_reference_sheets-94e1f512c065b180ad631d9b85f3d4b648ef5748.zip
Add (multi,hyper)graph, hypergraph Ramsey definition
-rw-r--r--content/graph_theory.tex17
1 files changed, 16 insertions, 1 deletions
diff --git a/content/graph_theory.tex b/content/graph_theory.tex
index f8b9a04..93e1561 100644
--- a/content/graph_theory.tex
+++ b/content/graph_theory.tex
@@ -1,6 +1,17 @@
\section*{Basics}
-A graph $G$ is the tuple $(V,E)$ where $V$ is a finite set of vertices and $E \subset {V \choose 2}$ is the set of edges.
+A \emph{graph} $G$ is a tuple $(V,E)$ where $V$ is a finite set of vertices and $E \subset {V \choose 2}$ is the set of edges.
+
+\spacing
+
+A \emph{multigraph} $G$ is a tuple $(V,E)$ where $V$ is a set of vertices and $E$ is a multiset of elements from ${V \choose 1} \cup {V \choose 2}$ i.e. multiedges and loops.
+
+\spacing
+
+A \emph{hypergraph} $H$ is a tuple $(X,E)$ where $X$ is a finite set and $E \subseteq 2^X \setminus \{\emptyset\}$.
+
+i.e. edges may join any number of vertices.
+
\subsection*{Notation of special graphs}
@@ -313,6 +324,10 @@ For graphs $G, H$ the \emph{induced Ramsey number} $R_\text{ind}(G,H)$ is the mi
\spacing
+For $r, l_1, \dots, l_k \in \N$ the \emph{hypergraph Ramsey number} $R_r(l_1,\dots,l_k)$ is the min $n$ s.t. for every $k$-coloring of ${[n] \choose r}$ there $\exists i \in [k], V \subseteq [n]$ with $|V|=l_i$ s.t. all sets in $V \choose r$ have color $i$.
+
+\spacing
+
e.g. $R(2,k) = R(k,2) = k$ and $R(3) = 6$
\subsection*{Ramsey Theorem}