diff options
Add random graph section
-rw-r--r-- | content/graph_theory.tex | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/content/graph_theory.tex b/content/graph_theory.tex index ff3f73a..84e3222 100644 --- a/content/graph_theory.tex +++ b/content/graph_theory.tex @@ -316,3 +316,39 @@ $\implies \exists x, y, z \in \N$ of the same color s.t. $x+y=z$. \section*{Flows} \section*{Random Graphs} + +$\mathcal{G}(n,p)$ is the probability space on graphs of order $n$ for which the edge-existence is independently decided by fixed probability $p \in [0,1]$. + +This is called \emph{Erd\H{o}s-R\'{e}nyi model}. + +\spacing + +A \emph{property} $\mathcal{P}$ is a set of graphs. + +$G \in \mathcal{G}(n,p_n)$ \emph{almost always} has property $\mathcal{P}$ if: + +$$\mathbb{P}(G \in \mathcal{G}(n,p_n) \cap \mathcal{P}) \to 1 (n \to \infty)$$ + +If $p_n$ is constant it is said that \emph{almost all} $G \in \mathcal{G}(n,p)$ have property $\mathcal{P}$. + +\subsection*{Threshold functions} + +$f : \N \to [0,1]$ is called \emph{threshold function} for $\mathcal{P}$ if: + +\begin{enumerate} + \item For $\frac{p_n}{f(n)} \to 0 (n \to \infty)$ graphs $G \in \mathcal{G}(n,p_n)$ almost always don't have property $\mathcal{P}$ + \item For $\frac{p_n}{f(n)} \to 1 (n \to \infty)$ graphs $G \in \mathcal{G}(n,p_n)$ almost always have property $\mathcal{P}$ +\end{enumerate} + +Such functions do not exist for all properties $\mathcal{P}$. + +\subsection*{Expected values and indicators} + +Let $X : \mathcal{G}(n,p) \to \N$ be a random variable. + +When $X$ counts e.g. the number of a certain class of subgraphs $\mathbb{E}(X)$ may be calculated by summing indicators over the maximum number $N$ of such subgraphs in $\mathcal{G}(n,p)$ and applying linearity: + +\vspace*{-4mm} +$$\mathbb{E}X = \mathbb{E}\left(\sum_{i=1}^N X_i\right) = \sum_{i=1}^N \mathbb{E}X_i = \sum_{i=1}^N \mathbb{P}(X_i=1)$$ + +\section*{Hamiltonian Cycles} |