diff options
-rw-r--r-- | content/graph_theory.tex | 57 |
1 files changed, 57 insertions, 0 deletions
diff --git a/content/graph_theory.tex b/content/graph_theory.tex index 10e4748..f8b9a04 100644 --- a/content/graph_theory.tex +++ b/content/graph_theory.tex @@ -337,6 +337,63 @@ $\implies \exists x, y, z \in \N$ of the same color s.t. $x+y=z$. \section*{Flows} +Let $G$ be a multigraph, $T := \{(x,e,y) | xy = e \in E(G)\}$. + +$f : T \to \mathbb{K}$ defines a \emph{circulation} on $G$ if: + +\begin{enumerate} + \item $\forall (x,e,y) \in T, x \neq y : f(x,e,y) = -f(y,e,x)$ + \item $\forall v \in V(G) : f(v,V) = 0$ +\end{enumerate} + +$f(X,Y) := \displaystyle\sum_{(x,e,y) \in T, x \neq y, x \in X, y \in Y} f(x,y)$ + +For any circulation $f$ and $X \subseteq V(G)$: + +$f(X,X)=0, \ f(X,V(G))=0, \ f(X,V(G) \setminus X)=0$. + +\subsection*{$k$-flows} + +For $k \in \N$ $f$ is a \emph{$k$-flow} if it is a $\Z$-flow s.t. $\forall (x,e,y) \in T : 0 < |f(x,e,y)| < k$. + +\spacing + +The smallest $k$ s.t. that $G$ has a $k$-flow $\varphi(G)$ is the \emph{flow number} of $G$. + +\subsection*{Networks} + +Let $s \neq t \in V(G)$ and $c : T \to \Z_{\geq0}$. + +Then $(G,s,t,c)$ is a \emph{network} with \emph{source} $s$, \emph{sink} $t$ and \emph{capacity function} $c$. + +\spacing + +$f : T \to \R$ is a \emph{network flow} if: + +\begin{enumerate} + \item $f(x,e,y) = -f(y,e,x)$ for all $e \in E(G)$ with endpoints $x \neq y$ + \item $f(x,V(G))=0, x \in V(G) \setminus \{s,t\}$ + \item $f(x,e,y) \leq c(x,e,y)$ for all $e \in E(G)$ with endpoints $x \neq y$ +\end{enumerate} + +\subsubsection*{Network cuts} + +$(S,\overline S)$ for $S \subseteq V(G)$ s.t. $s \in S, t \notin S, \overline S = V(G)-S$ is called a \emph{cut} in the network $(G,s,t,c)$. + +\spacing + +Its \emph{capacity} is $c(S,\overline S) := \displaystyle\sum_{x \in S, y \in \overline S, (x,e,y) \in T} c(x,y)$. + +\spacing + +For any flow $f$ and cut $(S,\overline S) : f(S,\overline S) = f(s,V(G))$. + +\subsubsection*{Ford-Fulkerson Theorem} + +In any network the max value of a flow equals the min capacity of a cut. + +There is an integral flow with this max flow value. + \section*{Random Graphs} $\mathcal{G}(n,p)$ is the probability space on graphs of order $n$ for which the edge-existence is independently decided by fixed probability $p \in [0,1]$. |