aboutsummaryrefslogtreecommitdiff
path: root/content/dgl.tex
blob: 5f82004dfae1dba4c551bcc75cf0cd5111c57e8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
\section*{Anfangswertprobleme}

Seien \(\J \subseteq \R\) ein Intervall, \(t_0 \in \J\) mit \(t_0 < \sup \J\), \(D \subseteq \R^m\) offen, \(f \in C(\J \times D, \R^m)\) und \(u_0 \in D\).

\vspace*{-4mm}
\begin{align*}
	u'(t)  &= f(t, u(t)), t\geq t_0, t\in \J \\
	u(t_0) &= u_0
\end{align*}

Für das Anfangswertproblem wird ein \(t_1 \in \J\) mit \(t_1 > t_0\) und eine eindeutige Lösung \(u \in C^1([t_0, t_1], \R^m)\) auf \([t_0, t_1]\) gesucht.

\subsection*{Lokale Lipschitzstetigkeit im Kontext}

Sei \(f \in C(\J \times D, \R^k)\), \(D \subseteq \R^m\) offen und es ex. alle \(\frac{\partial}{\partial x_j} f \in C(\J \times D, \R^k)\) für \(j \in \{1, \hdots, m\}\).

Dann ist \(f\) lokal Lipschitz in \(x\).

\subsection*{Picard-Lindelöf (lokal)}

Seien \(\J\) Intervall, \(D \subseteq \R^m\) offen, \(f \in C(\J \times D, \R^m)\) lokal Lipschitz in \(x\), \(u_0 \in D\), \(t_0 \in \J\) mit \(t_0 < \sup \J\). Dann gelten:

\begin{enumerate}[label=(\alph*)]
	\item \(\exists t_1 > t_0 \) mit \(t_1 \in \J\) und eind. Lsg. \(u\)  auf \([t_0, t_1]\) von \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\)
	\item \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\) besitze zwei Lsg. \(v_1\) und \(v_2\) auf \([t_0, T_1] \subseteq \J\) bzw. \([t_0, T_2] \subseteq \J\). Dann stimmen \(v_1\) und \(v_2\) auf \([t_0, T_3]\) mit \(T_3 = \min\{T_1, T_2\}\) überein.
\end{enumerate}

\subsection*{Picard-Lindelöf (maximal)}

Unter den Voraussetzungen von Picard-Lindelöf (lokal) sei \(u_0 \in D\), dann gilt:

\begin{enumerate}[label=(\alph*)]
	\item \(\exists\) max. Existenzzeit \(\overline t(u_0) \in (t_0, \sup \J]\) und eine eindeutige maximale Lösung \(u\) von \(u'(t) = f(t, u(t))\) mit \(u(t_0) = u_0\) auf \([t_0, \overline t(u_0))\)
	\item Wenn \(\overline t(u_0) < \sup \J\), dann \(\exists t_n \in (t_0, \overline t(u_0))\) mit \(\lim_{n \to \infty} t_n = \overline t(u_0)\) so, dass die Blow-Up Bedingung erfüllt ist: \(\lim_{n \to \infty} |u(t_n)|_n = \infty\) oder \(\lim_{n \to \infty} \inf_{x \in \partial D} |u(t_n) - x|_2 = 0\)
\end{enumerate}

\subsection*{Trennung der Variablen}

Sei \(u'(t)=g(t)h(u(t))\) mit \(u(t_0)=u_0\) ein AWP mit \(g \in C(\R)\), \(h \in C((a, b), \R)\), \(u_0 \in (a, b)\) und \(h(u_0) \neq 0\). \(u\) ist Lösung, wenn:

\(\forall t \in \J : u(t) \in (a, b)\), \(u \in C^1(\J, \R)\) und \(t_0 \in \J\).
\[ u \text{ ist Lösung } \Rightarrow \int_{t_0}^t g(s) ds = \int_{u_0}^{u(t)} \frac{1}{h(x)} dx \]

\subsection*{Lemma von Grönwall}

Seien \(b \in [0,\infty], \phi \in C([0,b),\R)\) und \(\alpha, \beta \geq 0\).
\[\psi(t) := \alpha + \beta \int_0^t \phi(s) ds \text{ für } t \in [0,b)\]
Weiter gelte \(\phi \leq \psi\) auf \([0,b)\). Dann gilt:
\[\forall t \in [0,b) : \phi(t) \leq \alpha \exp(\beta t)\]

\subsection*{Eindeutige Lösbarkeit}

Sei \(D = (a,b) \times \R^m\) mit \(-\infty \leq a < b \leq \infty\) und \(f : D \to \R^k\) erfülle die Vor. von Picard-Lindelöf. Gilt weiter \(\|f(t,x)\| \leq \alpha + \beta \|x\|\) für \(\alpha, \beta \geq 0\), dann ist das AWP auf \((a,b)\) eindeutig lösbar.

\section*{Autonome DGL}

Sei \(\emptyset \neq D \subseteq \R^p\) und \(g : D \to \R^p\).

Die DGL \(x'(t)=g(x(t))\) heißt \emph{autonom}.

\subsection*{Stationäre Stelle}

Sei \(x_0 \in D\) mit \(g(x_0)=0\) von \(x'(t)=g(x(t))\) für \(g : D \to \R^p\). Dann ist \(x_0\) eine stationäre Stelle.

\spacing

Sei \(g \in C(D,\R^p)\), ex. Lsg. \(x: [t_0,\infty) \to \R^p\) und \(x_0 := \lim_{t \to \infty} x(t)\). Dann ist \(x_0\) stationäre Stelle und es gilt \(x'(t) \to 0 \ (t \to \infty)\)

\subsection*{Monotone Lösung für \(p=1\)}

Sei \(D \subseteq \R\) Intervall, \(g \in C(D,\R)\) und \(x : \J \to \R\) eine Lsg. von \(x'(t)=g(x(t))\). Dann ist \(x\) monoton.

\subsection*{Fundamentalsystem}

Sei \(x'=Ax\) eine homogene lineare DGL. Ein \emph{Fundamentalsystem} ist eine Basis \(\{x_1,\dots,x_n\}\) des Lösungsraums: \[\mathcal{L} := \left\{ x \in C^1([a,b],\R^p) \middle| x=\sum_{k=1}^n a_k x_k, \ a_1,\dots,a_n \in \R \right\}\]

\subsection*{Bahn, Orbit, Trajektorie}

Seien \(\emptyset \neq D \subseteq \R^p\) offen, \(\J \subseteq \R\) und \(f : D \to \R^p\) lokal Lipschitz.

Ist \(x : \J \to \R^p\) Lsg. von \(x'(t)=f(x(t))\) so heißt \(x(\J)\) \emph{Bahn}, \emph{Orbit}, \emph{Trajektorie} von \(x'(t)=f(x(t))\).

\subsection*{Erstes Integral}

Sei \(H \in C^1(D,\R)\).

\(H\) heißt \emph{erstes Integral} von \(x'(t)=f(x(t))\) gdw.: \[\forall x \in D : H'(x) \cdot f(x) = 0\]

Sei weiter \(x : \J \to \R^p\) Lsg. von \(x'(t)=f(x(t))\). Dann ex. \(c \in \R\) s.d.: \(\forall t \in \J : H(x(t))=c\)

\subsection*{Stabilität}

Sei \(x_0 \in D\) mit \(f(x_0)=0\) stat. Stelle von \(x'=f(x)\).

\spacing

\(x_0\) heißt \emph{stabil} gdw. \(\forall \epsilon > 0 \exists \delta > 0 : \|x_1-x_0\| < \delta\) und ist \(x : [t_0,\omega_+) \to \R^p\) die nach rechts nicht fort. Lsg. des AWP \(x'(t)=f(x(t)), x(t_0)=x_1\) so ist \(\omega_+ = \infty\) und \(\forall t \geq t_0 : \|x(t)-x_0\| < \epsilon\).

\spacing

Gilt \(x(t) \to x_0 \ (t \to \infty)\) so ist \(x_0\) asymp. stabil.

\subsubsection*{Stabilitätssatz}

Sei \(f(x_0)=0\) und \(f\) in \(x_0\) diffbar. Gilt für EW \(\forall \lambda \in \sigma(f'(x_0)) : \text{Re} \lambda < 0\) so ist \(x_0\) asymptotisch stabil.

\spacing

Gilt \(\exists \lambda \in \sigma(f'(x_0)) : \text{Re} \lambda > 0\) so ist \(x_0\) instabil.

\subsubsection*{Lyapunov-Funktion}

Sei \(\emptyset \neq D \subseteq \R^p\) offen und \(f : D \to \R^p\) lokal Lipschitz sowie \(x_0 = 0 \in D\) und \(f(x_0)=0\).

Für das AWP \(x'(t)=f(x(t)), \ x(t_0)=0\) ist def.:

\spacing

Sei \(r > 0, U_r(0) \subseteq D\) und \(V \in C^1(U_r(0),\R)\). \(V\) heißt \emph{Lyapunov-Funktion} zu \(x'=f(x)\) in Punkt \(x_0=0\) gdw.: \(V(0)=0, \forall x \in U_r(0) \setminus \{0\} : V(x) > 0\) und \(\forall x \in U_r(0) : V'(x) \cdot f(x) \leq 0\).

\spacing

Besitzt \(x'=f(x)\) eine LF so ist \(x_0=0\) stabil.

\spacing

Gilt weiter \(\forall x \in U_r(0) \setminus \{0\} : V'(x) \cdot f(x) < 0\) so ist \(x_0\) asymptotisch stabil.

\section*{Randwertprobleme}